[.Ima

Lima Documentation
Release 1.9.8

Lima Team

Mar 24, 2021

INSTALLATION

Requirements 3
1.1 Builddependencies e 3
1.2 Pythondependencies L e 3
1.3 Optional dependencies i i it e e e e e 3
1.3.1 Saving format dependencies e e e 3
1.3.2 PyTango serverdependencies v v v v v v v vt e e e e e e e 4
Build and Install 5
2.1 Install binary packages e e e e e e e e e e 5
2.2 Buildfromsource e e 5
22,1 USINGSCIIPIS . . v v v v o i it e e e e e e e e e e e e e e e e 5
222 UsingCMake 6
2.3 Environment SEtUPo Lo e e e e e e e e e 7
PyTango Device Server 9
3.1 Serversetup e e e 9
3.2 Example of plugin server setup : Baslerdetector 9
32,1 LimadeviCe SEIVEI v v v v it e e e e e e e e e e e e e e e 9
322 Lima VIBWEr i ittt e e e e e e e e e e e e 12
3.23 Test LimaCCDs device server with Jive 14
Overview 17
Concepts 19
Tutorial 21
Supported Cameras 23
7.1 Condapackages o v i i i e e e e e e e e e e e 23
7.2 Windows Only L e e 24
7.2.1 HamamatSu e e e e e e e e e e e e e e e e e e 24
722 PCOCAMEIA . . . v v v v e 27
7.23 PerkinElmercamera e 32
7.2.4 PhotonicScience e e e e e e 35
7.3 Linux Only o e e e e e e 38
731 ADSCcamera oo v it e e e e e e e e e e 38
7.3.2 Andor SDK3 e 39
7.3.3 Aviexcameraplugin e e e e e e e e e e e e 42
7.3.4 Dexelacameraplugin o L e e e e e e e e e e e e 46
7.3.5 Freloncamera L e e e e e e e e 49
7.3.6 0 MaxipiXo e e e e e 51

7.3.7 DECTRISEIGER e e e s 54
7.3.8 Dectris Mythen camera o v vt i e e e e e e e e e e e e e e 58
7.3.9 Dectris Mythen3 e e e e e 59
7.3.10 DectrisPilatus e 61
7.3.11 Finger Lakes Instrumentation Microline camera plugin 63
7.3.12 imXPAD . .o 66
7.3.13 Merlincamera. e e e e e e e e e 69
7.3.14 PIXIRAD (PX1 and PX8) cameraplugin, 72
7315 PointGrey o oo e e e e e e e e e e 80
7.3.16 Prosilica oL e e e e e 83
7317 MarCCD e 86
7.3.18 Rayonix HScamera i e e e e 88
7.3.19 SlsDetector camera oot e e e e e e e e e e e e e 93
7320 UYE . . o v v o e e e e e e e e e e e 97
T321 Ultra o o e e e 100
7322 VAI2camera.t ot e e e e e e e e e e e e 102
7323 Xpad . .o e e e e e e 105
T.3.24 XSPIESS3 . v o e 108
7325 XHecameraot e e e e e 112
7.3.26 Zwo (Zhen Wang Optical) L 115
7.4 Windows and Linux Lo e e e e e e 119
7.4.1 Andor SDK2 cameraplugin 119
742 Baslercamera L. e e e e e 123
7.4.3 RoperScientific/Princeton L e e e 127
744 Simulator e e e 130
Future Cameras 135
8.1 Acknowledgement L e e e e e e e e 135
8.2 Underdevelopment. L e e 135
83 Foreseen e e e e e 135
Python TANGO server 137
9.1 Maindevice: LImaCCDs o e e e e e e 137
9.1.1 Property e 138
9.1.2 Commands e e 140
9.1.3 Attributes e e 141
0.2 CameradeviCes i i e e e e e e e e e 155
9.2.1 AndorTangodevice e e 155
9.22 BaslerTangodevice e 158
9.23 DexelaTangodevice e 159
9.2.4 FrelonTango device i i i i i i e e e e e e e e e 160
9.2.5 ImXPAD Tango device i i i i e e e e e e e e e e e e e 162
9.2.6 BaslerTangodevice e 163
9.277 Maxipix Tangodevice e 164
9.2.8 Merlin Tango device e 167
9.29 EigerTango device o v i i i i i e e e e e e e e e e e e 169
9.2.10 Mythen3 Tango device o 0 i i i i i e e e e e e e e e 171
9.2.11 Pilatus Tangodevice e e e 173
9.2.12 PCOTangodevice ittt 174
9.2.13 PerkinElmer Tango device 178
9.2.14 Pixirad Tangodevice 179
9.2.15 PhotonicScience Tango device o e e e e 182
9.2.16 PointGrey Tango device o v i i i e e e e e e e e 183
9.2.17 Prosilica Tangodevice e 184

11

12

13

14

15

9.2.18 RayonixHs Tangodevice i i i ittt e e e e e
9.2.19 Simulator Tango device o L e e e e e e e e e e
9.2.20 SlsDetector Tango device i e e e e
9.221 Ueye Tangodevice i ittt e
9.222 UltraTangodevice o i i ittt e e e e
9.223 VAI2 Tango device i i i e e e e
0224 XhTango device v v i v v i i e e e e e e e e e e e e e
9225 XpadTango device o v i i i e e e e e e e e e e
9.2.26 Xspress3 Tangodevice e e

9.3 Plugin devices: software operation and extra interfaceso L.
9.3.1 Background Substraction Lo e e
032 Bpm . . .o e e e e e e e e
9.33 FlatField. e
9.3.4 Mask e
9.3.5 PeakFinder e e
9.3.6 Roi2Spectrum e
9.3.7 RoiCounter e e e
9.3.8 LimaTacoCCD e e e
9.3.9 LiveVIEWETr o o it e e e e

10 Understand the plugin architecture

10.1 LiAbrary StruCture v v o o e

10.2 Generic Interface L e e e

10.3 Hardware Interface L e e

10.4 Standard Capabilities o e e e
10.4.1 Detector Information L. e e e e e e e e e e e e
10.4.2 Synchronization o 0 0 i e e e e e e e e e e e e e
10.4.3 Buffer Management L e e e e e e e e e e e e e
10.4.4 Framecallback e e

Setting up a development environment

I1.1 InstallConda o e e e e e e e e e e

11.2 Create abuild environment oL L e e e e e e e e e e

Source code organization

12.1 Source code i e e e e e e e e e e e
12.1.1 Plug-ins submodules L e e
12.1.2 Cameradevice it e e e e e

122 Class NAMES . . . v v v v o e

12.3 How to test the new plugin withpython

Implementation Recommendations

Werite a documentation

C++ API

I5.1 User APL . . . o e e
15.1.1 Hello, Lima! e e e
15.1.2 Control Interfaces o e
1513 Statuses it e e e e e e

15.2 CameraPlugin APL. e e e e e
15.2.1 Hardware Interface L e
15.2.2 Capabilities interfaces oL
1523 Callbacks o o e e e e e e
15.2.4 Implementations Helpers e

213
213
213
215
217
217
218
218
219

221
221
221

223
223
223
224
224
225

227

229

231
231
231
232
239
240
240
241
243
243

16 Python API
16.1 Hello, pyLima!

17 Prerequisite
17.1 Create a github account
17.2 Fork a project

18 Contribute guideline

Index

245
245

247
247
247

249

251

Lima Documentation, Release 1.9.8

LImA (stands for L ibrary for Im age A cquisition) is a project for the unified control of 2D detectors. It is used in
production in ESRF Beamlines and in other places.

The architecture of the library aims at clearly separating hardware specific code from common software configuration
and features, like setting standard acquisition parameters (exposure time, external trigger), file saving and image
processing.

LImA is a C++ library but the library also comes with a Python binding. A PyTango device server for remote control
is provided as well.

We provide Conda binary package for Windows and Linux for some cameras. Check out our Conda channel.

LImA is a very active project and many developments are ongoing and available from GitHub. You can find stable
version releases through git branches and tags on Github releases.

If you want to get in touch with the LIMA community, please send an email to lima@esrf.fr. You may also want to
subscribe to our mailing list by sending a message to sympa@esrf.fr with subscribe lima as subject.

For the latest changes, refers to the Release Notes.

Note that this documentation is also available in pdf and epub format.

INSTALLATION 1

https://www.esrf.eu/about/synchrotron-science/beamline
http://python.org
http://github.com/tango-cs/pytango
https://anaconda.org/esrf-bcu
https://github.com/esrf-bliss/LImA
https://github.com/esrf-bliss/LImA/releases
mailto:lima@esrf.fr
mailto:sympa@esrf.fr?subject=subscribe%20lima
http://readthedocs.org/projects/lima-doc/downloads/pdf/latest/
http://readthedocs.org/projects/lima-doc/downloads/epub/latest/

Lima Documentation, Release 1.9.8

2 INSTALLATION

CHAPTER
ONE

REQUIREMENTS

Some tools and libraries are required to build LImA for either Windows and Linux.

Note: All the dependencies, build or runtime, are available as Conda packages for both Windows and Linux platforms.

1.1 Build dependencies

* A C++ compiler (usually GCC for Linux and Visual Studio for Windows)
— Visual Studio 2008 for x86 or x64 for python2.7.x
— Visual Studio 2008 Express for x86 only for python2.7.x
— Visual Studio 2015 or 2017 for x86 and x64 for python >= 3.5

e CMake >=3.1

1.2 Python dependencies

LImA is compatible with python 2 and 3.
e numpy >= 1.1

. sip>=4.19

1.3 Optional dependencies

1.3.1 Saving format dependencies

TIFF, Tag Image File Format (TIFF), a widely used format for storing image data ;

* zIib, a lossless data-compression library. For Windows, you can download the ESRF binary package zlib-
windows and install it under C: \Program Files;

* CBF, a library for accessing Crystallographic Binary Files (CBF files) and Image-supporting CIF (imgCIF) files

)

HDFS5, a data model, library, and file format for storing and managing data ;

https://conda.io
https://cmake.org
https://lima1.readthedocs.io
http://pypi.python.org/pypi/numpy
https://www.riverbankcomputing.com/software/sip
http://www.libtiff.org/
https://zlib.net/
http://ftp.esrf.fr/pub/bliss/lima/zlib-windows.zip
http://ftp.esrf.fr/pub/bliss/lima/zlib-windows.zip
http://www.bernstein-plus-sons.com/software/CBF
https://support.hdfgroup.org/HDF5

Lima Documentation, Release 1.9.8

e CC(Cfits, CFITSIO, a library for reading and writing data files in FITS (Flexible Image Transport System) data
format ;

* L7Z4>=1.8.2, alossless compression algorithm ;

e libconfig, a library for processing structured configuration files. For Windows, you can download the ESRF
binary package libconfig-windows and install it under C: \Program Files.

1.3.2 PyTango server dependencies

* PyTango, the Tango python binding

* libtango, the Tango toolkit

4 Chapter 1. Requirements

https://heasarc.gsfc.nasa.gov/fitsio/ccfits
https://heasarc.gsfc.nasa.gov/fitsio/fitsio.html
https://lz4.github.io/lz4
http://www.hyperrealm.com/libconfig
http://ftp.esrf.fr/pub/bliss/lima/libconfig-windows.zip
http://github.com/tango-cs/pytango
http://www.tango-controls.org/downloads/

CHAPTER
TWO

BUILD AND INSTALL

2.1 Install binary packages

We provide Conda binary packages for some cameras. This is, by far, the easiest way to get started with LImA! For
instance:

’conda install —-channel esrf-bcu lima-camera-basler

would install a fully loaded LImA and all its dependencies with the Basler camera plugin and SDK. The camera comes
as a python module but is also C++ development package that includes header files and CMake package config files.

If you need the Tango device server for the camera, run:

conda install --channel esrf-bcu --channel tango-controls lima-camera-basler-tango

Note: The runtime libraries of the camera’s SDK are provided as well but some cameras requires drivers or specific
setups than needs to be installed manually.

2.2 Build from source

First, you need to get_source. Two methods are provided to build LImA from source:
* using our install script that aims to hide the complexity of CMake;

* using CMake directly for developers who are already acquainted with the tool and need the extra flexibility.

2.2.1 Using scripts

The install scripts will run CMake to compile and/or install.

It accepts input arguments (see below) but it also uses a configuration file scripts/config.txt. Feel free to
update this file for setting a permanent configuration for your own installation.

For Linux:

sudo] install.sh

https://conda.io
https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html
https://cmake.org
https://cmake.org
https://cmake.org

Lima Documentation, Release 1.9.8

For Windows:

install.bat

[-—install-prefix=<desired installation path>]
[--install-python-prefix=<desired python installation path>]
[options]

The ——git (Linux only) option can be used to clone the required submodules as a prerequisite. Otherwise you should
install the submodules manually with git commands, for instance:

$ git submodule init third-party/Processlib

$ git submodule init camera/basler

$ git submodule init applications/tango/python
$ git submodule update

Options are <camera—-name> <saving-format> python pytango-server:

<camera-name> can be a combination of any of the following options:

andor |andor3|basler|prosilicaladsc|mythen3|ueye|xh|xspress3|ultral
xpad|mythen|pco|marccd|pointgrey|imxpad|dexela|merlin|v4l2 |
eiger|pixirad|hexitec|aviex|roperscientific|rayonixhs|espia|maxipix|frelon

<saving-format> can be a combination of any of the following options:

cbf|nxs|fits|edfgz|edflz4|tiff|hdf5

python will install the python module
pytango-server will install the PyTango server

For example, to install the Basler camera, use the TIFF output format, the python binding and the TANGO server, one
would run:

$ sudo install.sh --git --install-prefix=./install --install-python-prefix=./install/
—python tiff basler python pytango-server

2.2.2 Using CMake

Install first the project submodules:

git submodule init third-party/Processlib
git submodule init camera/basler

git submodule init applications/tango/python
git submodule update

Run cmake in the build directory:

mkdir build
cd build
cmake
[-G "Visual Studio 15 2017 Win64" | -G "Visual Studio 15 2017" | -G "Unix Makefiles
"]
[-DCMAKE_INSTALL_PREFIX=<desired installation path>]
[-DPYTHON_SITE_PACKAGES_DIR=<desired python installation path>]
—DLIMA_ENABLE_TIFF=true
-DLIMACAMERA_BASLER=true

(continues on next page)

6 Chapter 2. Build and Install

http://github.com/tango-cs/pytango

Lima Documentation, Release 1.9.8

(continued from previous page)

-DLIMA_ENABLE_PYTANGO_SERVER=true
—-DLIMA_ENABLE_PYTHON=true

Then compile and install:

cmake —-build
sudo cmake --build --target install

2.3 Environment Setup

Warning: If you are using Conda, we advice against setting any environment variables that might affect the
Conda environment (e.g. PATH, PYTHONPATH)as this one of the most common source of troubles.

If the install path for libraries and python modules are not the default, you need to update your environment variables
as follow:

For Linux:

export LD_LIB
export PYTHONPATI

SLD_LIBRARY PATH:<my—-custom-install-dir>/Lima/lib
ONPATH:<my-custom-install-dir>

For Windows:

set PATH=%PATHS%; <my-custom—-install-dir>\Lima\lib
set PYTHONPATH=%$PYTHONPATHS; <my-custom-install-dir>

or update the system wide variables PATH for the libraries and PYTHONPATH for python.

2.3. Environment Setup 7

https://conda.io

Lima Documentation, Release 1.9.8

8 Chapter 2. Build and Install

CHAPTER
THREE

3.1

PYTANGO DEVICE SERVER

Server setup

As PyTango (Tango for python) server is provided as Python script, you just have to copy the applications/
tango/python directory wherever you want.

camera directory: contained all camera Tango device specifics so remove all none need script
doc directory: contained plugins camera documentation (exhaustive list of properties, commands and attributes)
plugins directory: contained all plugins device server like:

— Roi counters

— Mask...
scripts directory: contained a script use at ESRF to start Lima device server (can also be removed)
LimaCCDs.py file: python script to start Lima device server

LimaViewer.py file: python script to start LimaViewer device server to get image from Lima device server

:» warning: Make sure your environment is properly set for python and library paths, see Build and Install for more
information.

3.2

Example of plugin server setup : Basler detector

This procedure described the way to implement basler camera plugin. It is the same for whole the plugins, only
properties may change.

You need to create a device server for Lima and another for the camera plugin. Lima device will use basler device
thanks to “LimaCameraType” property. This property corresponds to the name of the camera plugin.

3.2.1 Lima device server

1. Run Jive and select “Tools->Server Wizard” menu. You must enter server and instance names

http://github.com/tango-cs/pytango
http://tango-controls.org

Lima Documentation, Release 1.9.8

) _ .
@ Jive 419 [MI-03152:20000] = E S

[File Edit [Tools| Filter

Server || ServerWizard Mias | Property
o & Da| Database Info

o= % sta| Database history
o S TangoRCCEsSConTol
o % tangotest

Refresh
|
r N
Tango Device Installation Wizard on MI-03152:20000 [
1
Server Registration
This wizard helps you to install a Tango devica. First, you have
to enter the “Senver name” (executable file name) and its
“instance name
To register the senver, click [Nexi].
—
/ Executable name
Server name LimaCCDs =
Instance name 1 -
Mext = Cancel
% — |

Click Next. ..

i

2. Start the Lima device server. Open a terminal and execute the command “server_name instance_name’

B Socticencs Mmnaliatiu - Fvite de cormieeil ==y %

&CC0s . py 1
Py

Click Next on the “Tango Device Installation Wizard” window
3. Declare a Lima device

The Lima device server, contained several classes. For Basler camera you need to configure LimaCCDs
and Basler classes.

10 Chapter 3. PyTango Device Server

Lima Documentation, Release 1.9.8

Class Selection

—X
" The server has been succesfully slared and has 8 dass(es) .
Keap in mind thal moding exiting dass propedy may affadt
oiher unaing senver.
Click [Edit Class] fo edit proparbes of ihe seleclad dass
Click [Declare desdce] 1o confinue wiih device dedaration,
|| server: LimacC0s =
LimaCLOsA Biaglar
EackgroundSubsiractionDeniceSaner
FlalfisldDeicaSened

LimaTaceCCDs

| =Bak |I Edil Class || Declare device || Cancel |

Select “LimaCCDs” class and click “Declare device” button. You must enter the device name with a
string as “Domain/Family/member”.

Wizzrd on MI-03152:20000 [

. Device Declaration of Class "LimaCCDs™
\'"l 1tis row time lo give & device name for e LimaCCDs' dass, ¥
this devico daes nal alroady ext, il will be added Othanwise, the
senvers device list remains unchanged
(| Click [Mead] to add device proparties.

oercanme

< Back || Mgl = || Cancel |

—

Click Next and configure all the properties. You can let the default property values except for “LimaCam-
eraType”. This property must contain the name of the Camera Plugin “Basler”.

Tango Device Installation Wizard on MI-03152:20000 =5

— Property: LimaCameraType
\-‘i Carnera Plugin names

Server: azler [setDetau
LimacCDsA

Class: [view Deraut
LimaCCOs

Device:
Emallimaccdt

< Back || Mgl = || Cancel |

At the end of the configuration, click “New Class” button.

Tango Device Installation Wizard on MI-03152:20000 s Tango Device Installation Wizard on MI-03152:20000 -
— Configuration done —{ Class Selection

The configuration of the device is now ended. A The server has been succeshully started and has & classies) .
Click [New device] to add a device 1o this class. Keep in mind that modifying exiting class property may affect

Click [New Class] to edit an other class other running server.

3 Click [Edit Class] to edit properiies of the selected class
Click [Declare device] to continue with device declaration.
Server: LimaCCDs

LimaCCDs/ paster
BackgroundSubstractionDeviceServer
FlatfieldDevice Server
LimaTacoCCDs

[newciass |[ewDevica || Finisn cancel | <Back || Edtciass |[pecaredevice | [cancal

Select “Basler” class and click “Declare device” button. You must enter the device name with a string as
“Domain/Family/member”.

3.2. Example of plugin server setup : Basler detector 11

Lima Documentation, Release 1.9.8

Tango Device Installation Wizard on MI-03152:20000 o

Device Declaration of Class "Basler”

s mow time b giee 3 device name for he Basler class, Nhis
dévice does not alneady aut, it will be 3dded. Dthorwisa, the
senvers device list remains unchanged

Cilick [Mess] bo acki device properties.

Drevice name :|If“'|".u'|ll"ﬂﬁl‘:ﬂﬂi"..35|9f X

[< Back | Mgl = || Cancel |

Click Next and configure all the properties. You can let the default property values except for
“cam_ip_adress”. This property must contain the IP adress of the Basler camera.

Tango Device Installation Wizard on MI-03152:20000 o

Property: cam_ip_address
3 Caméraip addiess

Server. 192.162.0.100 | setDetas
LimaCCDsA

Tlass: ‘i Dafauit
Basler

Device:

lmalimacedhasler

[< Back | Mgl = || Cancel |

Configuration is now ended, click “Finish”

Tango Device Installation Wizard on MI-03152:20000 et

Configuration done

3 The configuration of e d&sice i3 now ended,
Click [Now device] ta add 2 davice 1o this dass.
Click [Mew Class] 1o et an cfher dass

Mew Class Mew Devios | Firash | | Cancel |
e

3.2.2 Lima Viewer

To test the Lima device server, you can use the LimaViewer. This is a device server which periodically get the last
image from the buffer. It allows the user to check that Lima device server is operational. The procedure below describe
how to install and configure the LimaViewer device server.

1. Run Jive and select “Tools->Server Wizard” menu. You must enter server and instance names

12 Chapter 3. PyTango Device Server

Lima Documentation, Release 1.9.8

Tango Device Installation Wizard on MI-03152:20000 x|

Server Registration

you 10 install 3 Tango device. F
T nAma” (EEaCuta

Instsnce name

Heod > Cancel

Click Next. ..

2. Start the LimaViewer device server. Open a terminal and execute the command “server_name instance_name”

B Administrateur : Invite de commandes | !

0 -yl imaUiswer pu 1,

Click Next on the “Tango Device Installation Wizard” window

3. Declare a LimaViewer device

Select “LimaViewer” class and click “Declare device” button.

Tango Device Installation Wizerd on MI-03152:20000 X

= Class Selection

The server ha:

staried and has 1 dass(os)
ing class propenty may afedt

£

w Click [Declane device) to continu e with device dedaration
Sarder Lima\iewer
LimaViewen1

- Bakk EdA Class Declare device | Cancel

Enter the device name with a string as “Domain/Family/Member”.

Tango Device Installation Wizard on MI-03152:20000 &

Device Declaration of Class "LimaViewer”

Device name limatimacodii ewes

= Back Hexd =

Cancel

3.2. Example of plugin server setup : Basler detector 13

Lima Documentation, Release 1.9.8

Click Next and configure the “Dev_Ccd_name” property. This property corresponds to the name of the
Lima device created before.

Tango Device Installation Wizerd on MI-03152:20000 [
Installation Wizard on MI-0315 .

- Property: Dev_Ccd_name
Ti Hoen deviee CCD

Server: limatimapodii Sel Detaut

Lima\Viewar1

LimaViewear
Device:
Emallimaccdhigwear

<gack || mew= | [canca |

Configuration is now finished, click on “Finish”

Tango Device Installation Wizard on MI-02152:20000 [
Insiglatign Wizerd on ME 03135 |

— Configuration done
\i The configuration of e d&ice iz now ended.
] Click [New device] to add a device 1o this class.
gk [New Class] to et an oher class

Mew Clazs Mew Device || Finizh | | Cancel |

3.2.3 Test LimaCCDs device server with Jive

The LimaViewer device appears in the Device tab from Jive. Make a right click on the LimaViewer device server and
select “Monitor Device”

o Tools Miler

Banw [Comiee [Class | s [Prasey |
+ o DatBasess
=8 LimaCChs
9 Limaiasr
3
¥] L

= B T A LI
= S st
L
= 5y bngoies

AtkPanel is now launched. You can configure exposure time and the number of frames to acquire.

14 Chapter 3. PyTango Device Server

Lima Documentation, Release 1.9.8

%] AtkPanel 43 : lima/limaced/limaviewer | la= (S i Sl

File View Preferences Help |

|
B limatimacedimaiewar -

limafimaccdimaviewer
re device is In O state, =

-

| Ex ime | 0.010 Nownit | 000010 ||
posure_time | 001 wnit | 000.010/| -
ANKX AR
| Number_of frames | 000 Nounit 0000.00 | - |
FYT¥T ¥7¥

Scalar L Image_ccd | |

The camera image can be viewed by selecting the “image_ccd” tab

e

Image_ccd

|

|4 AtkPanel 4.3 : lima/limaccd/limaviewer I E. -
Fila View Prefarencas Hslp
B imaftimacodimaviewer =
limadimaccdlimaviewar
Fe devica is in ON state -
| T ﬁ 250
F
£l
=
N =
i
b)
e
E 100
El -
Scalar

3.2. Example of plugin server setup : Basler detector

Lima Documentation, Release 1.9.8

16 Chapter 3. PyTango Device Server

CHAPTER
FOUR

OVERVIEW

This section provides a big picture of LImA.

[Application]
1T 1y
Lima

Control Layer
[Dlsplay] [Saving] [Pmcess]
Detector-
Sclf:ﬂfgf nage: m: Buffer
Flip J;:?:um
Concat
—
Hardware Interface
- [petinfo | [sync || Butter |
P Optional |
| iR) (Com] (e):
A7 [shuner [e) [[even |
—|) |
—_ 1

Fig. 1: Fig. 1 LImA Architecture

17

Lima Documentation, Release 1.9.8

BUFFER OPERATION STATUS
Hardware Buffer
+ Single frame — | ImageAcquiredCallback

« Accumulated frame
« Concatenated frame

START OF SOFTWARE OPERATIONS

Hardw are
Buffer

e [astimagedcguired

= [astBaselmage

ImageDperationiist
Buffer

CounterHistony
Buffer

e [astimageReady

- [astimageSaved

A
Internal Image Operations
e SERHE P 1 Reconstruction
2 Flip
3. Binning
4. ROl
¥
External Operations
Runlevel image Counfer Maonitor
1 Background Integral1
FlatField Threshold
.‘muumm snmnnng
AutoSave BPM
Integral2
Sinogram
|

- [astCounferReady

i END OF SOFTWARE OPERATIONS

Fig. 2: Fig. 2 LImA Dataflow, Statuses and Events

18

Chapter 4. Overview

CHAPTER
FIVE

CONCEPTS

19

Lima Documentation, Release 1.9.8

20

Chapter 5. Concepts

CHAPTER
SIX

TUTORIAL

In this tutorial, we are going to write a program that prepares the camera and run a simple acquisition. We will be
using the simulator, but every cameras should work in the same way. The program is in C++, the python binding being
similar or simpler.

First some headers needs to be included :
* The simulator/camera.h that defines the Camera class for this specific cameras
e The 1ima/ctcontrol.h that defines the CtControl class which is the main user interface of LImA

If the library and plugin were not installed in the default locations, make sure to adjust the include search paths of your
compiler.

#include <simulator/camera.h>
#include <lima/ctcontrol.h>

Then, the camera object is instantiated and the corresponding interface is constructed:

// A camera instance
simulator::Camera simu(/+ some cameras have specific settings here, e.g. IP address x/

)7

// A hardware interface
simulator::Interface hw(simu);

At this point, the code specific to the camera code is over and we can instantiate the 1 ima : : Ct Control object:

// The main control object
CtControl ct = lima::CtControl (&hw);

lima: :CtControlisaclass that aggregates many aspects of the configuration and the control of the cameras. Here
is a non exhaustive lists of controls:

Control Description

Acquisi- Controls exposure time, number of frames, trigger mode, etc. ..

tion

Image Controls cropping (ROI), binning, rotation and other processing applied either on hardware or by
software. . .

Saving Controls the file format, compression, metadata. . .

Shutter Controls the shutter mode and open and closed times. ..

Buffer Controls the number of buffer, the maximum memory to use...

These specific controls are accessible form the main 1 ima: : CtControl object.

21

Lima Documentation, Release 1.9.8

// Get the acquisition, saving and image controls
CtAcquisition xacg = ct.acquisition();

CtSaving xsave = ct.saving();

CtImage ximage = ct.image();

All these control objects have member functions to set their parameters, either directly or using a the Parameter
object, such as 1ima: :CtSaving: :Parameter (nested class). Here is how we could set the saving properties of
our acquisition:

save->setDirectory ("./data");
save->setPrefix ("test_");

save->setSuffix (".edf");
save->setNextNumber (100) ;

save—->setFormat (CtSaving: :EDF) ;
save->setSavingMode (CtSaving: :AutoFrame) ;
save->setFramesPerFile (100);

In the same way, image processing can configured to use a 2 x 2 binning:

image->setBin(Bin (2, 2));

Or acquisition parameters to get 10 frames with a 0.1 sec exposure:

acg->setAcgMode (Single) ;
acg->setAcgExpoTime (0.1);
acg->setAcgNbFrames (10) ;

Once we are happy with our settings, it’s time to prepare the acquisition which perform multiple tasks such as buffer
allocation, folder creation or applying the camera settings through the camera plugin and SDK.

// Prepare acquisition (transfer properties to the camera)
ct.preparelAcq() ;

If the preparation is successful, the acquisition can be started anytime with:

// Start acquisition
ct.startAcq();

That’s all for now, have good fun with LImA!

22 Chapter 6. Tutorial

CHAPTER
SEVEN

SUPPORTED CAMERAS

7.1 Conda packages

The following Conda packages are available from the esrf-bcu channel. Some cameras may required to manually
install the drivers for the given SDK version.

Camera Linux | Windows | SDK

Andor Yes Yes linux 2.103 win 2.102
Andor3 Yes sdk3 3.13

Basler Yes Yes Pylon 5.0/5.1
Dexela Yes libDexela

Eiger (Dectris) Yes SIMPLON 1.8
Frelon Yes libEspia 3.10.0
ImXPAD Yes n/a

Maxipix Yes libEspia 3.10.0
Marcced Yes n/a

Merlin Yes n/a

Mythen3 Yes n/a

PCO Yes Yes PCO 1.23
Pilatus Yes n/a

Pixirad Yes n/a

Pointgrey Yes FlyCapture 2.3.3
Prosilica Yes PvAPI 1.24
Simulator Yes Yes n/a

SLS Detector / PSI | Yes SlsDetectorPackage v4
Ueye Yes uEye 4.61.0
Ultra Yes n/a

V4L2 Yes v412

Xh Yes n/a

23

Lima Documentation, Release 1.9.8

7.2 Windows Only

7.2.1 Hamamatsu

HAMAMATSUD

FHOTOMN IS5 OUR

Introduction

The Hamamatsu Orca flash is digital CMOS camera. It supports USB3 or direct camera link connectivity.
e USB 3.0 -> 30fps
e Cameralink -> 100fps

The Lima plugin controls an Orca camera (ORCA-Flash4.0 V2, C11440-22CU V2) under Windows. It is based on
the Hamamatsu DCAM-API SDK.

Prerequisite

Host OS is Windows (32 or 64 bits). The driver must be installed on the host system.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_HAMAMATSU=true

For the Tango server installation, refers to PyTango Device Server.

24 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Initialization and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialization

There is nothing specific. The available cameras must first be enumerated. A selected camera can then be inited. (Note
that at the moment only one camera will be handled by the pluggin.)

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations according to some
programmer’s choices. We only provide here extra information for a better understanding of the capabilities of the
Orca camera.

¢ HwDetlnfo
* Max image size is : 2048 * 2048
* 16 bit unsigned type is supported
* Pixel size: 6.5um * 6.5um
* Detector type: Scientific CMOS sensor FL-400
* HwSync
Supported trigger types are:
e IntTrig
» ExtTrigSingle

* ExtGate (not yet implemented)

Optional capabilities

* HwBin
Possible binning values are:
e 1%1
e 2 %D
o 4 %4
* HwRoi
The Subarray mode allows defining a rectangle for ROI:
e X:0to 2044
e Width: 4 to 2048
* Y: 0to 2044
* Heigth: 4 to 2048

7.2. Windows Only 25

Lima Documentation, Release 1.9.8

* HwShutter

* There is no shutter control available in the DCAM-API SDK.

* Cooling

* There is no cooler sensor access or control to the cooling system via the DCAM-API SDK.

» Cooling management is autonomous and can only be chosen between air or water cooling outside the sdk.
* Readout mode

* Two readout modes are available: SLOW (30fps at full frame) or NORMAL (100fps at full frame).

Configuration

C-mount -
= R Foarmer adanter ORCA-Flash4.0 V2 digital camera set
== Relay lens (0.5x, elc.) ORCA-Flashd.0 V2
................... |:[]
'' =
e e e
= =4 AC adapler HSR*s Commercially
i) available
software

I:l Standard ||_—I:r|

USB 3.0
interface board and cable

@ 5350

C-mount lens

Laptop FC

Ig Camera Link interface board and cable

How to use

The following set of functions is used as a wrapper to the DCAM-API SDK. Code can be found in the HamamatsuD-
CAMSDKHelper.cpp file.

dcam_init_open(); // initialize DCAM-API and get a camera,,
—handle.

dcamex_setsubarrayrect () ; // Initialize the subarray mode (defines a_,
—ROI -rectangle-)

dcamex_getsubarrayrect () ; // Get the current subarray parameters (get,,
—ROI settings)

dcamex_getimagewidth () ; // Get the width of the image
dcamex_getimageheight () ; // Get the height of the image
dcamex_getfeatureing() ; // Get the settings of a feature (ex:_

—exposure time)
dcamex_getbitsperchannel () ; // Get the number of bits per channel

26 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

7.2.2 PCO camera

Introduction

¢ PCO camera systems

* PCO develops specialized fast and sensitive video camera systems, mainly for scientific applications; which
covers digital camera systems with high dynamic range, high resolution, high speed and low noise. PCO home

page
¢ Product overview and technical data of the PCO cameras supported in LIMA

* PCO.dimax: High speed 12 bit CMOS camera with fast image rates of 1469 frames per second (fps) at full
resolution of 1920 x 1080 pixel. (tech data pcodimax)

7.2. Windows Only 27

http://www.pco.de/
http://www.pco.de/
http://www.pco.de/categories/high-speed-cameras/pcodimax-hd/

Lima Documentation, Release 1.9.8

¢ PCO.edge: Extremely low noise SCMOS camera with fast frame rates (100 fps), wide dynamic range (1:27000),
high quantum efficiency, high resolution (2560 x 2160) and large field of view. (tech data pcoedge)

* PCO.2000: High resolution (2048 x 2048 pixel) and low noise 14bit CCD cooled camera system with internal
image memory (camRAM), allows fast image recording with 160 MB/s. The available exposure times range
from 500 ns to 49 days. (tech data pco2000)

* PC0O.4000: High resolution (4008 x 2672 pixel) and low noise 14bit CCD cooled camera system with internal
image memory (camRAM), allows fast image recording with 128 MB/s. The available exposure times range
from 5 us to 49 days. (tech data)

* Interface buses

e Cameralink: used by PCO.dimax and PCO.edge
¢ Cameralink HS: used by PCO.edge

* USB3.0: used by PCO.edge

* GigE: used by PC0O.2000 and PCO.4000

* Type of applications

* Mainly used in scientific applications.

¢ OS supported

* Win7 Professional (english) 64 bits SP1.

Prerequisites

¢ Required software packages
* download links
* PCO and Silicon Software download (login/pw required)
* VC++ download
¢ GSL download
¢ python download
e numpy download
¢ PyQt download
¢ PyTango download
e GIT download

¢ md5 checksum and size of packges used (maybe not updated)

Silicon Software Runtime 5.4.4
£8317c5145bac803£f142c51b7¢c54ba27 RuntimeSetup_with_Applets_v5.4.4_Winb64.exe

pco-sdk 1.20
eb73ab0495a66c068c408344e20c8ad9 read_me.txt
69a8f5667b71a8cf206d782e20f526ab SW_PCOSDKWIN_120.exe

CAMWARE v403_1
a9f8b2e465b7702££727ba349%9e£327e8 SW_CAMWAREWING64_403_1.exe

28 Chapter 7. Supported Cameras

http://www.pco.de/categories/scmos-cameras/pcoedge-42/
http://www.pco.de/categories/sensitive-cameras/pco2000/
http://www.pco.de/categories/sensitive-cameras/pco4000/
ftp://pcoag.biz/
http://www.microsoft.com/visualstudio/en-us/products/2008-editions/express
http://sourceforge.net/projects/gnuwin32/files/gsl/1.8/gsl-1.8.exe/download
http://www.python.org/download/releases/2.6.6/
http://sourceforge.net/projects/numpy/files/NumPy/1.5.1/
http://www.riverbankcomputing.co.uk/software/pyqt/download
http://www.tango-controls.org/download
http://code.google.com/p/msysgit/downloads/list

Lima Documentation, Release 1.9.8

VC+

+ compiler

Microsoft Visual Studio 2008
Version 9.0.30729.1 SP
Microsoft .NET Framework
Version 3.5 SP1

Installed Edition: Professional

Microsoft Visual C++ 2008 91605-

Microsoft Visual C++ 2008

270-4441125-60040

Pyt

hon
8d10£f£f41492919%9ae93a989%abad4963d14
5a38820953d38db6210a90e58£85548d
b73£8753c76924bc7b75afaa6d304645

numpy-MKL-1.8.1.win-amd64-py2.7.exe
PyTango-8.0.4.win-amd64-py2.7.exe
python-2.7.6.amd64 .msi

pco

edge CLHS / for firmware upgrade
9790828ce5265bab8b89585d8b8e83a9
b9266e03a04ac9a9f£f835311f0e27d94
7e2f767684fb4ffaf5a5faclaf0c7679
2ed778785489846£d141£968dca3735b
6bdb7a27b0d7738762c878a33983dada

to 1.19

pco.programmer_edgeHS.exe
pco_clhs_info.exe

sc2_clhs.dll

README . txt
/FW_pco.edge_CLHS_020_V01_19.ehs

UTI

LS

38ba677d295b4b6cl7368bb86b661103
0377ccd0a3283617d161£24d080£fb105
3cbd2488210b6e7b3e7falbaf05022d4

Filezilla_3.22.1_win64-setup_bundled.exe
Git-1.9.0-preview20140217.exe
MobaXterm_Setup_7.1.msi

¢ Enviroment variables

* system variables

> add manually the python path (it is not set by the installation program)

PATH -> C:\Python26;

> used for some utility batch files

PATH -> C:\blissadm\bat;

¢ user variables

TAN

GO_HOST -> <host>:20000

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DL

IMACAMERA_PCO=true

For the Tango server installation, refers to PyTango Device Server.

7.2.

Windows Only

29

Lima Documentation, Release 1.9.8

Post installation actions

* enable/disable PCO logs

===> rename file extensions (C:\ProgramData\pco) :
.txt (disabled) / .log (enabled) —--———+
camware.log <-———- created by hand
PCO_CDlg.1log
PCO_Conv.log
SC2_Cam.log

¢ Command prompt console (Visual Studio)

> All Programs
> Microsoft Visual C++ 2008 Express Edition
> Visual Studio Tools
> Visual Studio 2008 Command Prompt

« TODO
* After installing PCO modules Installation

* And probably Tango server PyTango Device Server

Configuration

* TODO

PCO EDGE notes

30 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

PC characteristics (used for PCO EDGE at ESRF)

* PROCESSOR

2x Intel Xeon E5645 Six-Core CPU, 2,40GHz, 80W, Socket LGA1l366, 12MB 5, 86GT/sec

CPU's: 2x Xeon SixCore E5645 2,40Ghz 12MB 5, 86GT/sec

Intel Xeon E5645 Six-Core CPU, 2,40GHz, 80W, Socket LGA1366, 12MB
external cache. 5,86GT/sec QPI speed. 1333MHz memory speed (DDR3 only).
Intel Technologies: Intel Turbo Boost , Intel Hyper-Threading
Technology, Intel Virtualization (VT-x), Intel Trusted Execution,
Enhanced Intel SpeedStep, Intel Demand Based Switching, Execute
Disable Bit.

« RAM

24 GB (6x DDR3-1333 Reg. ECC 4 GB module)

« HD
C:
WDC WD5003ABYX-01WERAL
Western Digital 500 GB, 7200 RPM, SATA 2, 300 Mbps
D:

Adaptec RAID 5405/5405Q with 2 HD of 450 Gb -> RAIDO 837 GB
HUS156045VLS600
Hitachi 450GB, 15,000RPM SAS / Serial Attached SCSI, 6Gbps

* graphic card

Matrox G200eW

¢ motherboard

Motherboard Extended ATX format 13,68in x 13in, (34,7cm x 33cm) (W x H);
2 socket LGA 1366-pin. It supports processors Quad-Core Intel Xeon
series 5500; QPI bus system (up to 6.4GT/s); =*chipset Intel 5520%;

18 socket DIMM 240 pin, support for up to 288GB memory DDR3
1333/1066/800MHz Registered or 48GB memory DDR3 unbuffered ECC, the real
operating ram speed depends on the processor?s model and number of
installed ram, best performances are achieved through a triple channel
configuration;

¢ PClI slots

1x PCIe x4 (in x8 slot)
3x PCIe x8
1x PCIe x8 (in x16 slot)
2x PCIe x16

7.2. Windows Only 31

Lima Documentation, Release 1.9.8

PCO EDGE - install instructions for Silicon Software Me4 Board

Check the document camera/pco/doc/Me4_Installation_Test_el.pdf with the requirements and procedure to install
the CameraLink grabber card. It is important in order to get the maximum transfer speed required by the PCO EDGE
camera.

The boards tested by PCO are:

Supermicro X8ST3
GigaByte GA-X58A-UD3R
Intel S5520

Intel DX58502
Supermicro X8DTH-iF

With the PC described in PCO EDGE notes the speed of the CameraLink is about 570 MB/s (66% of the theoretic
max of 860 MB/s).

PCO EDGE - shutter mode (global/rolling)

cam.talk ("rollingShutter 0") <-—— set shutter mode to GLOBAL

cam.talk ("rollingShutter 1") <-—- set shutter mode to ROLLING

After the change of the shutter mode, the cam is rebooted and requires about 10s to became ready, meanwhile the acq
status is AcqConfig.

The validRanges (exposure and latency time) are updated after the mode change.

7.2.3 Perkin ElImer camera

32 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Intoduction
“PerkinElmer is a world leader in the design, development, and manufacture of Amorphous Silicon (aSi)
Flat Panel Detectors (FPD) designed to perform across a wide range of medical, veterinary, and indus-
trial, Non-Destructive Testing (NDT) applications. Our XRD family of detectors provide superior image

resolution, high frame rates up to 30 frames per seconds (fps), energy levels form 20 keV -15 MeV and
easy information storage and retrieval.”

The detector model we tested (ESRF) is : XRD 1621 CN ES

Prerequisite Windows 7

First, you have to install the Perkinelmer Windows7 SDK to the default path.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_PERKINELMER=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Camera initialisation

The camera will be initialized by created the PerkinElmer: : Interface object. The contructor will take care of
your detector configuration according to the SDK installation setup done before.

Std capabilities

This plugin has been implement in respect of the mandatory capabilites but with some limitations which are due to
the camera and SDK features. We provide here further information for a better understanding of the detector specific
capabilities.

* HwDetlnfo

getCurrlmageType/getDeflmageType(): Bpp16 only.

setCurrlmageType(): this method do not change the image type which is fixed to Bpp16.
* HwSync

get/setTrigMode(): the supported mode are IntTrig, ExtStartStop, ExtTrigReadout

7.2. Windows Only 33

Lima Documentation, Release 1.9.8

Optional capabilities

In addition to the standard capabilities, we make the choice to implement some optional capabilities which are sup-
ported by the SDK and the I-Kon cameras. A Shutter control, a hardware ROI and a hardware Binning are available.

e HwBin

Some camera models support binning 4x4, 2x2, 4x2 4x2 and 1x1 and others support only 2x2. Camera type si
provided when initing the sdk (_InitDetector()) and only camera of type 15 supports the long range of binning.

Configuration

* Nothing special to do, but read the manual for proper installation.

How to use

This is a python code example for a simple test:

from Lima import PerkinElmer
from lima import Core

hwint = PerkinElmer.Interface ()
ct = Core.CtControl (hwint)

acqg = ct.acquisition{()

set offset and gain calibration, one image 1.0 second exposure
hwint.startAcqgOffsetImage(l, 1.0)
hwint.startAcgGainImage (1, 1.0)

set further hardware configuration

print (hwint.getGain())
hwint.setCorrectionMode (hwint .OffsetAndGain) # or No or OffsetOnly
hwint.setKeepFirstImage (False)

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory='/buffer/1cbl18012/opisg/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

set accumulation mode
acg_pars= acqg.getPars ()

#0-normal, 1-concatenation, 2—accumu
acg_pars.acgMode = 2

acq_pars.accMaxExpoTime = 0.05
acg_pars.acgkExpoTime =1
acg_pars.acgNbFrames = 1

(continues on next page)

34 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

acqg.setPars (acg_pars)
here we should have 21 accumalated images per frame
print (acqg.getAccNbFrames())

now ask for 2 sec. exposure and 10 frames
acq.setAcgExpoTime (2)
acqg.setNbImages (10)

ct.prepareAcql()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(1l)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.2.4 PhotonicScience

Photonic Science

SCIENTIFIC DETECTOR 5YSTEMS

Introduction

“Photonic Science is a high technology independent manufacturer of scientific detector systems covering
the range of visible to x-ray and neutron detection. The camera technology offered is wide ranging, from

CCD, EMCCD, CMOS to image intensified systems.”
The CCD camera 4022 has been tested at ESRF on beamline ID11.

Prerequisite

TODO

7.2. Windows Only

35

Lima Documentation, Release 1.9.8

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_PHOTONICSCIENCE=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

TODO

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations which are due to
the camera and SDK features. We only provide here extra information for a better understanding of the capabilities
for Andor cameras.

* HwDetlnfo
TODO

* HwSync
TODO

Optional capabilities

In addition to the standard capabilities, we make the choice to implement some optional capabilities which are sup-
ported by the SDK and the I-Kon cameras. A Shutter control, a hardware ROI and a hardware Binning are available.

e HwShutter
TODO

* HwRoi
TODO

* HwBin
TODO

36 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Configuration

TODO

How to use

This is a python code example for a simple test:

from Lima import PhotonicScience
from lima import Core

camera library path
cam = Xh.Camera ('ImageStar4022_v2.5\imagestar4022control.dll")
hwint = Xh.Interface (cam)

ct = Core.CtControl (hwint)

acqg = ct.acquisition{()

configure some hw parameters

set some low level configuration

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory='/buffer/1cb18012/opisg/test_lima'
pars.prefix="testl_'

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

now ask for 2 sec. exposure and 10 frames
acqg.setAcgExpoTime (2)
acqg.setNbImages (10)

ct.prepareAcq()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep (1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.2. Windows Only 37

Lima Documentation, Release 1.9.8

7.3 Linux Only

7.3.1 ADSC camera

Introduction

ADSC stands for Area Detector System Corporation.

Note: The Lima module has been tested only with the 315r model.

Prerequisite

2 programs have to be running on the ADSC server:
* ccd_image_gather

e det_api_workstation

Initialisation and Capabilities

In order to help people to understand how the camera plugin has been implemented in LImA this section provide some
important information about the developer’s choices.

Camera initialisation

Here are the available functions:
* SetHeaderParameters ()
* UseStoredDarkImage ()
e SetImageKind ()

* SetLastImage ()

Std capabilites

This plugin has been implemented in respect of the mandatory capabilites but with some limitations according to some
programmer’s choices. We only provide here extra information for a better understanding of the capabilities for the
Adsc camera.

¢ HwDetInfo
— Max image size is : 3072 * 3072
— 16 bit unsigned type is supported

38 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

* HwSync

— trigger type supported are: IntTrig

Optional capabilites

¢ HwBin

-1%*1
- 2%2

Configuration

No specific hardware configuration is needed.

How to use

here is the list of accessible fonctions to configure and use the ADSC detector:

void
void
bool
void
int

void
int

void

setHeaderParameters (const std::string& header);
setStoredImageDark (bool value);
getStoredImageDark (void) ;

setImageKind (int image_kind);

getImageKind (void) ;

setLastImage (int last_image);

getLastImage (void) ;

setFileName (const std::stringé& name);

const std::string& getFileName (void);

void

setImagePath (const std::string& path);

const std::string& getImagePath (void);

7.3.2 Andor SDK3

7.3. Linux Only

39

Lima Documentation, Release 1.9.8

Introduction

Andor Technology manufactuer offers a large catalogue of scientific cameras. Covered scientific applications are
low ligth imaging, spectroscopy, microscopy, time-resolved and high energy detection. Andor is providing a Software
Development Tool (SDK) for both Windows and Linux, supporting different interface buses such as USB, CameraLink
and also some specific acquisition PCI board. Unfortunately there was a significant API change between the v2 line of
SDK and the brand new v3 of the SDK, and recent cameras are only supported by the v3 SDK, whilst this new SDK
is not (yet ?) supporting previously built cameras.

The Lima module has been tested only with these camera models:
* Neo (sCMOS 3-tap, full Camera Link, Linux OS)
e Zyla (5.5 sCMOS, full Camera Link, Linux OS)

Installation & Module configuration

First, you have to install the Andor SDK the default path (/ust/local). For our test we used the SDK for Linux version
V3.3.30004.0 and ran the install script install_andor for which option 2 (64b linux) was selected, the default
installation is made under /usr/local/ with:

e /usr/local/include, header files
e /usr/local/1lib, library files

e /usr/local/andor/bitflow, files for the frame-grabber driver (including camera firmware/frame grab-
ber configuration)

The Linux SDK 3.3 has shared libraries which has been compiled on recent linux kernel, check first you have the right
kernel and libc available by compiling one of the example program available under examples/console. Andor3
python module needs at least the lima core module.

The best before using this Lima pluggin with a Andor Neo camera is to test the proper setting of the frame-grabber
driver and system configuration by using the two test programs included in the SDK. Those are typically found in
/usr/local/andor/examples/ and are 1istdevices and image.

Then, follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

—-DLIMACAMERA_ANDOR3=true

For the Tango server installation, refers to PyTango Device Server.

Configuration

Connect the camera on both cameralink cables and power on.

How to use

A simple python test programm:

from Lima import Andor
from lima import Core

+ +
/ /
v camlink config path v camera index
cam Andor3.Camera ('/users/blissadm/local/Andor3/andor/bitflow', 0)

(continues on next page)

40 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

hwint = Andor3.Interface (cam)
ct = Core.CtControl (hwint)

acq = ct.acquisition()

configure some hw parameters
hwint.setTemperatureSP (-30)
hwint.setCooler (True)

wait here for cooling

set some low level configuration

hwint.setCooler (True)
hwint.setTemperatureSP (-55)
hwint.setFanSpeed (cam.Low)

hwint.setAdcGain (cam.bll_low_gain)
hwint.setAdcRate (cam.MHz100)
hwint.setElectronicShutterMode (cam.Rolling)
hwint.setOverlap (False)

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory="'/buffer/1cbl8012/opisg/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

set accumulation mode
acq_pars= acqg.getPars()

#0-normal, 1-concatenation, 2—accumu
acq_pars.acqMode = 2

acg_pars.accMaxExpoTime = 0.05
acq_pars.acgExpoTime =1
acq_pars.acgNbFrames = 1

acqg.setPars (acg_pars)
here we should have 21 accumulated images per frame
print acqg.getAccNbFrames ()

now ask for 2 sec. exposure and 10 frames
acqg.setAcgExpoTime (2)
acqg.setNbImages (10)

ct.prepareAcq()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep (1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

(continues on next page)

7.3. Linux Only 41

Lima Documentation, Release 1.9.8

(continued from previous page)

read the first image
im0 = ct.ReadImage (0)

7.3.3 Aviex camera plugin

Intoduction

The PCCD-170170 is a large area detector (4096 x 4096) designed for use in WAXS or SAXS experiments in a vacuum
environment.

42 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

A F
G
H
J
K
E ﬂ & Dry A
. ¥y Argon
c B. M-ray transparent
windaw
D c. GdOS Xray
phosphor screen
b. Fiber-aptic coupler
E assembly
i E. Detector housing
. Hermetic fesd
through
G. CCD
simplified mechanical layout of the i ::;I':;“"'““"“
100 x 100 mm CCD detector head
o Water cooled heat
exchanger
K. Coolant connector

Hardware Block Diagram

ol]

Extemnal

Trigges
Video Capture Card - PIXCIE4 (PCl Express / Camera Link)

The detector supports full frame, multiframe time-sliced, and streak camera modes of operation.

Used at the SWING beamline of Synchrotron SOLEIL to make timeresolved SAXS measurements together with
another WAXS detector.

This Lima plugin controls an Aviex camera under linux.
It is based on the MX beamline control toolkit.

It has been tested at the Synchrotron SOLEIL facility, but has not been installed yet on a Beamline.

7.3. Linux Only 43

http://mx.iit.edu

Lima Documentation, Release 1.9.8

Module configuration

First, compile the Mx Library/Driverand and install it in the default path (/opt /mx/).

Start the Mx driver with:

cd /opt/mx/sbin/
./mx start

Then, follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_AVIEX=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

There are 2 parameters to be filled with your Lima client:
* The detector friendly name: can be any string defined by user.

* The detector database file name: this file must contains configuration parameters such as IP adress, port.

Std capabilites

This plugin has been implemented in respect of the mandatory capabilites but with some limitations according to some
programmer’s choices. We only provide here extra information for a better understanding of the capabilities for the
Aviex camera.

* HwDetlnfo

* Max image size is : 4096 * 4096

* 16 bit unsigned type is supported

* HwSync trigger type supported are:
— IntTrig
— ExtTrigSingle

44 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Optional capabilites

e HwBin

-1*1
- 2%2
— 44
—_8%8

¢ HwRoi

Not yet implemented

Configuration

No specific hardware configuration is needed.

How to use

Binning above are typical values, but binning is not necessarily square.

Here is the list of accessible fonctions to configure and use the Aviex detector:

/==
void
void
void
void
void
void
void
void

/7!

Available mode

Related to Aviex specific features
getExpMultiplier (double& exp_mult);
setExpMultiplier (double exp_mult);
getLatencyTime (double& period_time);
setLatencyTime (double period_time);
getGapMultiplier (double& gap_mult) ;
setGapMultiplier (double gap_mult);
getMxLibraryVersion(std::string& version);
getInternalAcgMode (std: :string& acg_mode);

—FIELD

void
void
void
void
void
void
void
/7!
// !
/7!
/7!
// !
void

MASK_CORRECTION_BIT POSITION
BIAS_CORRECTION_BIT POSITION
DARK_CORRECTION_BIT _POSITION
FLOOD_CORRECTION_BIT POSITION
GEOM_CORRECTION_BIT POSITION

setInternalAcgMode (const std::string& mode);
getReadoutDelayTime (doubles& readout_delay);
setReadoutDelayTime (double readout_delay);
getReadoutSpeed (bool& readout_speed);
setReadoutSpeed (bool readout_speed);
getInitialDelayTime (double& initial_delay);
setInitialDelayTime (double initial_delay);

setCorrectionFlags (unsigned long);

H W N RO

ONESHOT, MULTIFRAME, GEOMETRICAL, MEASURE_DARK, MEASURE_FLOOD_

7.3. Linux Only

45

Lima Documentation, Release 1.9.8

7.3.4 Dexela camera plugin

,) Dexela %“‘%q

PerkinElmer

Introduction

The Dexela detector is a brand product of PerkinElmer. PerkinElmer has recently Acquired Dexela Limited a man-
ufacturer of CMOS flat panel. Nevertheless the Dexela detector SDK still remains not compatible with the other
PerkinElmer detector SDK (see perkinelemer plugin) and one need to use this camera plugin instead.

Prerequisite

The Dexela detector model sensor2923 only has been tested at ESRFE.
The detector is controlled via an acquisition board: PIXCI(R) E4 PCIExpress Camera Link board (EPIX,Inc.).

You need to install the acquisition card SDK. It was tested with 3.8 version (xclib). You can find them at http:
/Iwww.epixinc.com/support/files.php .

You also need to install libdexela which is not yet GPL. See detail with mihael.koep @softwareschneiderei.de.

BIOS configuration

You should disable all power saving mode like CSTATE and disable also multiple-threading feature of cpu.
At ESRF, SuperMicro computers have to be configured like this:

* Simultaneous Multi-threading has to be disabled

* CI1E support has to be disabled

¢ Intel CSTATE Tech has to be disabled

Linux kernel configuration

As the PIXCI acquisition card needs a low jitters configuration, you need to change some kernel parameters.
To do so, you have to change in grub configuration file (under /etc/default/grub for debian) the
GRUB_CMDLINE_LINUX_DEFAULT by adding theses options:

pcie_aspm=off
intel_idle.max_cstate=0

processor.max_cstate=0
idle=poll

mce=ignore_ce
ipmi_si.force_kipmi=0
nmi_watchdog=0

noht

(continues on next page)

46 Chapter 7. Supported Cameras

http://www.epixinc.com/support/files.php
http://www.epixinc.com/support/files.php
mailto:mihael.koep@softwareschneiderei.de

Lima Documentation, Release 1.9.8

(continued from previous page)

nosoftlockup
isolcpus=0

the whole line should look something like this:

GRUB_CMDLINE_LINUX_ DEFAULT="ipv6.disable=1 quiet pcie_aspm=off intel_idle.max_
—cstate=0 processor.max_cstate=0 idle=poll mce=ignore_ce ipmi_si.force_kipmi=0 nmi_
—watchdog=0 noht nosoftlockup isolcpus=0"

You also have to uninstall or disable the irgbalance process. On Debian you can simply type:

sudo apt-get purge irgbalance

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_DEXELA=true

For the Tango server installation, refers to PyTango Device Server.

Initialization and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialization

The camera will be initialized within the DexelalInterface object. The parameter to pass to
DexelaInterface () constructor is the fill path need for the acquisition card. This file is generated by xcap
software provided by PIXCI. you can find some example in the config directory.

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with limitations according due to the
detector specific features and with some programmer’s choices. We do not explain here the standard Lima capabilites
but you can find in this section the useful information on the Dexela specfic features.

¢ HwDetlnfo

The Dexela detector as a pixel size of 74.8e-6 m (74.8 um) and the image data type is fixed to 16bpp (bit
per pixel).

* HwSync
The supported trigger modes are IntTrig, IntTrigMult, ExtTrigMult and ExtGate.
The exposure time range is 0.0116 (1/86) to 120 seconds.

The latency time is not manage.

7.3. Linux Only 47

Lima Documentation, Release 1.9.8

Optional capabilities

In addition to the standard capabilities, we make the choice to implement some optional capabilities in order to have
an improved simulation.

* HwShutter

There is no shutter capability.
¢ HwRoi

There is no hardware capability, but Lima provides the sofware Roi as well.
* HwBin

The supported hardware binning factors are 1x1, 2x2, and 4x4.

How to use

The LimaCCDs tango server provides a complete interface to the dexela plugin so feel free to test.

For a quick test one can use python, is this a short code example:

from Lima import Dexela
from lima import Core
import time

hwint = Dexela.Interface('./sensor2923.fmt")
ct = Core.CtControl (hwint)

acqg = ct.acquisition{()

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory="'/tmp/"'
pars.prefix="'testdexela_ '
pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

now ask for 2 sec. exposure and 10 frames
acqg.setAcgExpoTime (2)
acqg.setNbImages (10)

ct.preparelAcq()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(l)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

48 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

7.3.5 Frelon camera

Introduction

The FReLoN camera is a 14 bit dynamic CCD camera, with a 2048*%2048 pixel chip. This camera has been developped
by the awesome people with the ‘Analog and Transient Electronic’ ESRF group.

Prerequisite
Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_FRELON=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities
Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms

to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The Frelon plugin provides a helper class FrelonAcq which manages the initialisation sequence with the camera
and interface object. An Espia board channel number should be set as the initialisation parameter (default is 0).

frelon = Frelon.FrelonAcqg(int (espia_dev_nb))
return frelon.getGlobalControl ()

7.3. Linux Only 49

Lima Documentation, Release 1.9.8

Std capabilites

This plugin has been implemented in respect of the mandatory capabilites but with limitations according due to the
detector specific features and with some programmer’s choices. We do not explain here the standard Lima capabilites
but you can find in this section the useful information on the Dexela specfic features.

* HwDetlnfo
TODO

* HwSync
TODO

Optional capabilites

In addition to the standard capabilities, we make the choice to implement some optional capabilities in order to have

an improved simulation.
e HwShutter
TODO
* HwRoi
TODO
e HwBin
TODO

Configuration

The main configuration will consist in providing the correct DexelaConfig. cfq file to the detector APIL. The file
has to be provided by the manufacturer with a second file like sensor2923. fmt. The . fmt file contains some

calibration data.

How to use

The LimaCCDs tango server provides a complete interface to the dexela plugin so feel free to test.

For a quick test one can use python, this is a short example code:

from Lima import Frelon
from lima import Core
import time

FrelonAcq = Frelon.FrelonAcqg(int (espia_dev_nb))
control = FrelonAcqg.getGlobalControl ()

acq = control.acquisition ()

setting new file parameters and autosaving mode
saving=control.saving()

pars=saving.getParameters ()
pars.directory="/tmp/"

(continues on next page)

50

Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

pars.prefix="testfrelon_
pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

now ask for 2 sec. exposure and 10 frames
acq.setAcgExpoTime (2)
acqg.setNbImages (10)

acqg.prepareAcq()
acqg.startAcqgl()

wait for last image (#9) ready
lastimg = control.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(1l)

lastimg = control.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = control.ReadImage (0)

7.3.6 Maxipix

Intoduction

MAXIPIX is a high spatial resolution (small pixels), high frame rate, photon-counting pixel detector developed by
ESRF. MAXIPIX is based on MEDIPIX2/TIMEPIX readout ASICs developed by CERN and the MEDIPIX2 collab-
oration. The active detector element consists of a hybrid pixel circuit glued on a chipboard and connected to it with
microwire connections. The hybrid pixel circuit consists itself of a pixelated semiconductor sensor connected to one
or several readout ASICs by individual micro solder bumps on each pixel. Various module formats are available and
may implement either MEDIPIX2 or TIMEPIX ASICs. Both ASICs have identical pixel geometries but different
characteristics as regards principally the lowest energy threshold, the discriminator range, and the available detection
modes.

We provide today Maxipix 5x1, 4x1 and 1x1 formats based on both TIMEPIX and MEDIPIX2 ASICs.

Beamlines are equiped with the detector, Espia card and a specific computer running centOS 5 x86_64.

7.3. Linux Only 51

Lima Documentation, Release 1.9.8

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_MAXIPIX=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized within the Maxipix: :Camera class. Camera contructor aims to load the configura-
tion and calibration data to the detector backend electronic (Priam card).

There are so many hardware parameters you can set, but refer to the maxipix documentation for a good pratice.

set/getSignalLevel() set/getReadLevel() set/getTriggerLevel() set/getShutterLevel() set/getReadyMode()
set/getGateMode() set/getFillMode() set/getEnergy()

Std capabilites

This plugin has been implemented in respect of the mandatory capabilites but with some limitations which are due to
the camera. We only provide here extra information for a better understanding of the capabilities for Maxipix cameras.

* HwDetlnfo
getCurrlmageType/getDeflmageType(): always 16bpp.
setCurrlmageType(): this method do not change the image type which is fixed to 16bpp.
* HwSync
get/setTrigMode(): supported modes are IntTrig, IntTrigMult,ExtTrigSingle, ExtTrigMult and ExtGate.

Optional capabilites

In addition to the standard capabilities, we make the choice to implement some optional capabilities which are sup-
ported by this detector. A Shutter control.

¢ HwShutter

setMode(): only ShutterAuto and ShutterManual modes are supported.

52 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Configuration

Only provided configuration files (. cfg and .bpc) must be used for your detector, you must not change those files.
Each detector has its own set of files. Please contact ESRF Detector group for help.

How to use

This is a python code example of a simple acquisition:

from Lima.Maxipix import Maxipix
from lima import Core

config name (.cfg file)

espia channel /
v
cam = Maxipix.Camera (0, '/users/blissadm/local/maxipix/calib/tpxatl25"',

< - — —
<G - — — — —

ot

pxatl25X")

hwint = Maxipix.Interface (cam)
ct = Core.CtControl (hwint)

acq = ct.acquisition{()

set some low level configuration

see maxipix documentationf for more information
hwint.setEnergyThreshold(10.0)

hwint.setFillMode (cam.DISPATCH)
hwint.setShutterLevel (cam.HIGH_RISE)

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory='/buffer/1cbl18012/opisg/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

set accumulation mode
acg_pars= acqg.getPars()

#0-normal, 1-concatenation, 2—accumu
acg_pars.acqgMode = 2

acq_pars.accMaxExpoTime = 0.05
acg_pars.acgkExpoTime =1
acg_pars.acgNbFrames = 1

acq.setPars (acqg_pars)
here we should have 21 accumalated images per frame
print acqg.getAccNbFrames ()

(continues on next page)

7.3. Linux Only 53

Lima Documentation, Release 1.9.8

(continued from previous page)

now ask for 2 sec. exposure and 10 frames
acq.setAcgExpoTime (2)
acqg.setNbImages (10)

ct.prepareAcq()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(l)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.3.7 DECTRIS EIGER

54

Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Introduction

The EIGER 1M is a high performance X-Ray detector system. It is made of two subsystems: a detector and a control

server. The control server is driven using an HTTP RESTful interface.

A C++ API for LImA has been developed at Synchrotron SOLEIL.

Prerequisite

Some dependencies need to be installed:

* libcurl

* liblz4

* libzmq

* libjsoncpp

to install all dependencies on debian like system, use this command:

$ sudo apt-get install libcurl4-gnutls-dev liblz4-dev libzmg3-dev libjsoncpp-dev

Installation and Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_EIGER=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialization

Initialization is performed automatically within the Eigercamera object. By default the stream will be use to retrieved
images unless hardware saving is activated (CtSaving::setManagedMode(CtSaving::Hardware))

Std capabilities

¢ HwDetlnfo

Capability 1M Value 4M Value 9M Value 16M Value
Maximum image size | 1030 * 1065 2070 * 2167 3110 * 3269 | 4150 * 4371
Pixel depth 12 bits 12 bits 12 bits 12 bits

Pixel size 75um * 75pum | 75pum * 75um | 75pm * 75pum | 75pum * 75um
Maximum frame rate | 3000Hz 750Hz 238Hz 133Hz

7.3. Linux Only

55

Lima Documentation, Release 1.9.8

* HwSync
Supported trigger types are:
e IntTrig
¢ IntTrigMult
» ExtTrigSingle
» ExtTrigMult
* ExtGate
* There is no hardware support for binning or roi.

¢ There is no shutter control.

Optional capabilities

¢ Cooling
* The detector uses liquid cooling.

* The API allows accessing the temperature and humidity as read-only values.

At the moment, the specific device supports the control of the following features of the Eiger Dectris API.
(Extended description can be found in the Eiger API user manual from Dectris).

* Photon energy: This should be set to the incoming beam energy. Actually it’s an helper which set the threshold

* Threshold energy: This parameter will set the camera detection threshold. This should be set between 50 to 60
% of the incoming beam energy.

e Auto Summation (if activate image depth is 32 and, if not image depth is 16)

¢ HwSaving: This detector can directly generate hd5f, if this feature is used. Internally Lima control the file
writer Eiger module. This capability can be activated though the control part with CtSaving object with setMan-
agedMode method.

* Countrate correction

* Efficiency correction

* Flatfield correction

¢ LZ4 Compression

¢ Virtual pixel correction

¢ Pixelmask

56 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Configuration

Device configuration

The default values of the following properties must be updated in the specific device to meet your system

configuration.

Property name | Description Default value

DetectorIP Defines the IP address of the Eiger control server (ex: 192.168.10.1) | 127.0.0.1
How to use

This is a python code of a simple acquisition:

from Lima import Eiger
from lima import Core

o +
/
v 1ip adress or hostname

cam = Eiger.Camera(lid32eigerl)

hwint = Eiger.Interface (cam)
ct = Core.CtControl (hwint)

acqg = ct.acquisition{()

set hardware configuration

refer to the Dectris Eiger documentation for more information
cam.setCountrateCorrection (False)
cam.setFlatfieldCorrection (True)

cam.setAutoSummation (False)

cam.setEfficiencyCorrection (True)
cam.setVirtualPixelCorrection (True)

cam.setPixelMask (True)

read some parameters
print (cam.getTemperature())
print (cam.getHumidity())

set energy threshold in KeV
cam.seThresholdEnery (16.0)
cam.setPhotonEnergy (16.0)

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory="'/buffer/1cbl8012/opisg/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

(continues on next page)

7.3. Linux Only 57

Lima Documentation, Release 1.9.8

(continued from previous page)

set accumulation mode
acg_pars= acqg.getPars()

now ask for 10 msec exposure and 10 frames
acq.setAcgExpoTime (0.01)
acqg.setNbImages (10)

ct.preparelAcql()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(l)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.3.8 Dectris Mythen camera

HFM

M‘ﬂ RIS l({j

58

Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Introduction

Server for the control of a Mythen detector.

Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_MYTHEN=true

For the Tango server installation, refers to PyTango Device Server.

Installation

Configuration

7.3.9 Dectris Mythen3

HF[".J

,"‘Hl >
VThEn e

7.3. Linux Only 59

Lima Documentation, Release 1.9.8

Intoduction

Server for the control of a Mythen detector.

Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_MYTHEN=true

For the Tango server installation, refers to PyTango Device Server.

Testing

Here is a simple python test program:

import time

from Lima import Mythen3
from Lima import Core
import time

camera = Mythen3.Camera ("160.103.146.190", 1031,
interface = Mythen3.Interface (camera)
control = Core.CtControl (interface)

check its OK

print camera.getDetectorType ()
print camera.getDetectorModel ()
print camera.getVersion ()

nframes=10
acgtime=2.0

setting new file parameters and autosaving mode

saving=control.saving()

saving.setDirectory ("/buffer/dubble281/mythen™)
saving.setFramesPerFile (nframes)
saving.setFormat (Core.CtSaving.HDFS5)
saving.setPrefix ("mythen3_")

saving.setSuffix (".hdf")

saving.setSavingMode (Core.CtSaving.AutoFrame)
saving.

do acquisition

acqg = control.acquisition ()
acq.setAcgExpoTime (acgtime)
acqg.setAcgNbFrames (nframes)

control.prepareAcq ()
control.startAcqg()
time.sleep(25)

False)

setOverwritePolicy (Core.CtSaving.Overwrite)

60

Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

7.3.10 Dectris Pilatus

T
:%E

=
3

':

=)

Intoduction

The PILATUS detector (pixel apparatus for the SLS) is a novel type of a x-ray detector, which has been developed at
the Paul Scherrer Institut (PSI) for the Swiss Light Source (SLS). PILATUS detectors are two-dimensional hybrid pixel
array detectors, which operate in single-photon counting mode. A hybrid pixel that features single photon counting,
comprises a preamplifier, a comparator and a counter. The preamplifier enforces the charge generated in the sensor
by the incoming x-ray; the comparator produces a digital signal if the incoming charge exceeds a predefined threshold
and thus, together with the counter, one obtains a complete digital storage and read-out of the number of detected
x-rays per pixel without any read-out noise or dark current!

PILATUS detectors feature several advantages compared to current state-of-the-art CCD and imaging plate detectors.
The main features include: no readout noise, superior signal-to-noise ratio, read-out time of 5 ms, a dynamic range of
20bit, high detective quantum efficiency and the possibility to suppress fluorescence by a energy threshold that is set
individually for each pixel. A more complete comparison is given in Table 1. The short readout and fast framing time
allow to take diffraction data in continuous mode without opening and closing the shutter for each frame (see Fig. 1).
For a comparison on the response to x-rays of integrating and single photon counting detectors see Fig. 2.

Because of the specified properties, PILATUS detectors are superiour to state-of-the-art CCD and imaging plate de-
tectors for various x-ray detection experiments. Major improvements can be expected for time-resolved experiments,
for the study of weak diffraction phenomena (e.g. diffuse scattering), for accurate measurements of Bragg intensities,
for resonant scattering experiments,. . .

Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_PILATUS=true

For the Tango server installation, refers to PyTango Device Server.

Installation

On Pilatus PC, create as root a ramdisk of 8GB which will be used by Lima dserver as temporary buffer:

e edit file /etc/fstab and add the following line:

’none /lima_data tmpfs size=8g,mode=0777 0 0 ‘

* make the directory:

’mkdir /lima_data ‘

¢ and finally mount the ramdisk:

7.3. Linux Only 61

Lima Documentation, Release 1.9.8

mount -a

¢ For Pilatus3, edit file ~det /p2_det/config/cam_data/camera.def and add thoses two lines:
— camera_wide = WIDTH_OF_THE_DETECTOR
— camera_high = HEIGHT_OF_THE_DETECTOR

Start the system

» Log on the detector pc as det user start tvx/camserver:

cd p2_det
./runtvx

* when tvx has finished initializing camserver just type guit in tvx window

* Log on the detector pc as an other user or det

cd WHERE_YOU_HAVE_INSTALL_PILATUS_TANGO_SERVER
TANGO_HOST=Host:Port python LimaCCD.py instance_name

If the cameserver window notice a connection, seams to work ;)

How to use

This is a python code example for a simple test:

from Lima import Pilatus
from Lima import Core

cam = Pilatus.Camera ()
hwint = Pilatus.Interface (cam)
ct = Core.CtControl (hwint)

acq = ct.acquisition{()

set some low level configuration
cam.setThresholdGain (1)
cam.setFillMode (True)
cam.setEnergy (16.0)
cam.setHardwareTriggerDelay (0)
cam. setNbExposurePerFrame (1)

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory='/buffer/1cbl18012/opisg/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

now ask for 2 sec. exposure and 10 frames

(continues on next page)

62 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

acq.setAcgExpoTime (2)
acqg.setAcgNbFrames (10)

ct.preparelAcq()
ct.startAcqgl()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep (1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.3.11 Finger Lakes Instrumentation Microline camera plugin

camera/fli/doc/microline.png

Introduction

FLI supplies cameras to more than 50 countries for life science imaging, veterinary radiology, astronomy, forensics,
transmission electron microscopy, and a wide range of other applications. Our on-site staff includes a talented group
of mechanical, electrical, and software engineers. FLI provides a two Software Development Tool (SDK) for both
Windows and Linux.

The Lima module as been tested only with this cameras models:
¢ IKon-M and IKon-L (USB interface, Linux OS debian 6)
¢ IKon-L (USB interface, Windows XP - 32bits)

Prerequisites
Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_FLI=true

For the Tango server installation, refers to PyTango Device Server.

7.3. Linux Only 63

Lima Documentation, Release 1.9.8

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized within the AndorCamera object. The AndorCamera contructor sets the camera with
default parameters for Preampifier-Gain, VerticalShiftSpeed and the ADC/HorizontalSpeed.

These parameters are optimized for the faster mode, which means the maximum gain, the “fasten recommended”
VSSpeed (i.e as returned by GetFastestRecommendedVSSpeed() SDK function call) and the ADC with the faster
Horizontal speed.

All the parameters can be set and get using the corresponding methods, the default values (max speeds and gain) can
be applied with -1 as passed value:

set/getPGain()
set/getVsSpeed()
set/getADCSpeed()
Some other methods are available but they can not be supported depending on which camera model you are using:
set/getHighCapacity()
set/getFanMode()
set/getBaselineClamp()

The above parameters, only support enumerate type for values.

Std capabilites

This plugin has been implemented in respect of the mandatory capabilites but with some limitations which are due to
the camera and SDK features. We only provide here extra information for a better understanding of the capabilities
for Andor cameras.

e HwDetInfo

getCurrlmageType/getDefIlmageType(): the methods call the SDK GetBitDepth() function to resolve the image
data type. The bit-depth correspond to the AD channel dynamic range which depends on the selected ADC
channel. By experience and with IKon detectors we only have Bpp16 of dynamic range, but the methods can
return Bpp8 and Bpp32 as well.

setCurrlmageType(): this method do not change the image type which is fixed to 16bpp.
* HwSync
get/setTrigMode(): the only supported mode are IntTrig, ExtTrigSingle, ExtGate and IntTrigMult

64 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Optional capabilites

In addition to the standard capabilities, we make the choice to implement some optional capabilities which are sup-
ported by the SDK and the I-Kon cameras. A Shutter control, a hardware ROI and a hardware Binning are available.

* HwShutter

setMode(): only ShutterAuto and ShutterManual modes are supported
* HwRoi

There is no restriction for the ROI setting
* HwBin

There is no restriction for the Binning but the maximum binning is given by the SDK function GetMaximumBin-
ning() which depends on the camera model

Configuration

Plug your USB camera on any USB port of the computer, that’s it !

How to use

This is a python code example for a simple test:

from Lima import FLI
from lima import Core

cam = Andor.Camera ('/dev/fliusb0")
hwint = Andor.Interface (cam)
ct = Core.CtControl (hwint)

acqg = ct.acquisition{()

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory="'/buffer/1cbl18012/opisg/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

set accumulation mode
acq_pars= acqg.getPars ()

#0-normal, 1-concatenation, 2—accumu
acq_pars.acqMode = 2

acg_pars.accMaxExpoTime = 0.05
acq_pars.acgkExpoTime =1
acq_pars.acgNbFrames = 1

acqg.setPars (acg_pars)

(continues on next page)

7.3. Linux Only 65

Lima Documentation, Release 1.9.8

(continued from previous page)

here we should have 21 accumalated images per frame
print acqg.getAccNbFrames ()

now ask for 2 sec. exposure and 10 frames
acqg.setAcgExpoTime (2)
acqg.setNbImages (10)

ct.prepareAcq()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep (1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.3.12 imXPAD

Introduction

The imXpad detectors benefit of hybrid pixel technology, which leads to major advantages compared to the other
technologies. These advantages are mainly provided by direct photon conversion and real time electronic analysis of
X-ray photons. This allows for direct photon counting and energy selection.

XPAD detectors key features compared to CCDs and CMOS pixels detectors are:
* Noise suppression
* Energy selection

* Almost infinite dynamic range

66 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

* High Quantum Efficiency (DQE(0) ~100%, dose reduction)
¢ Ultra fast electronic shutter (10 ns)
¢ Frame rate > 500 Hz

Prerequisite

In order to operate the imXpad detector, the USB-server or the PCI-server must be running in the computer attached
to the detector.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_IMXPAD=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

imXpad camera must be initialisated using 2 parameters:
1) The IP adress where the USB or PCI server is running

2) The port number use by the server to communicate.

Std capabilities

* HwDetlnfo
getCurrlmageType/getDeflmageType():
* HwSync:
get/setTrigMode(): the only supported mode are IntTrig, ExtGate, ExtTrigMult, ExtTrigSingle.

Refer to: http://imxpad.com/templates/SoftwareDocumentation/softwareDocumentation.html for a whole description
of detector capabilities.

7.3. Linux Only 67

http://imxpad.com/templates/SoftwareDocumentation/softwareDocumentation.html

Lima Documentation, Release 1.9.8

Optional capabilities

This plugin does not offer optional hardware capabilities.

How to use

This is a python code example for a simple test:

from Lima import imXpad
from Lima import Core
import time

Setting XPAD camera (IP, port)
cam = imXpad.Camera ('localhost', 3456)

HWI = imXpad.Interface (cam)
CT = Core.CtControl (HWI)
CTa CT.acquisition ()

CTs = CT.saving()

#To specify where images will be stored using EDF format
CTs.setDirectory ("./Images™)

CTs.setPrefix ("id24 M)

CTs.setFormat (CTs.RAW)

CTs.setSuffix (".bin")

CTs.setSavingMode (CTs.AutoFrame)

CTs.setOverwritePolicy (CTs.Overwrite)

#To set acquisition parameters

CTa.setAcgExpoTime (0.001) #1 ms exposure time.
CTa.setAcgNbFrames (10) # 10 images.

CTa.setLatencyTime (0.005) # 5 ms latency time between images.

#To change acquisition mode
cam.setAcquisitionMode (cam.XpadAcquisitionMode. Standard)

#To set Triggers. Possibilities: Core.IntTrig, Core.ExtGate, Core.ExtTrigMult, Core.
—ExtTrigSingle.
CTa.setTriggerMode (Core.IntTrig)

#To set Outputs.
cam.setOutputSignalMode (cam.XpadOutputSignal.ExposureBusy)

#ASYNCHRONOS acquisition
CT.prepareAcql()
CT.startAcq()

#SYNCHRONOUS acquisition
CT.preparelAcq ()
CT.startAcqg()
cam.waitAcgEnd ()

#To abort current process
#CT.stopAcqg ()

#Load Calibration from file

(continues on next page)

68 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

#cam.loadCalibrationFromFile ("./S70.cfg")

#Perform Calibrations 0-SLOW, 1-MEDIUM, 2-FAST

#cam.calibrationOTN (0)

#cam.calibrationOTNPulse (0)

#cam.calibrationBEAM (1000000, 60,0) # ls->exposure time, 60->ITHL MAX, O0->SLOW

7.3.13 Merlin camera

Introduction

The Merlin Medipix3Rx Quad Readout detector system from Diamond Light Source Ltd is a photon counting soild
state pixel detector with a silicon sensor.

The Lima module has only been tested in a 2 x 2 configuration, but is available in a 4 x 1 configuration

There is extensive documentation :ref: Merlin_and_Medipix3_Documentation_v0.7.pdf

7.3. Linux Only 69

Lima Documentation, Release 1.9.8

Prerequisite
The Merlin detector system is based on a National Instruments FlexRIO PXI FPGA system. It incorporates an embed-

ded PC running Windows with a LabView graphical user interface, incorporating a socket server, which this plugin
communicates with. This program must be running prior to starting Lima.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_MERLIN=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you good
knowledge regarding camera features within the LIMA framework.

Camera initialisation

The camera has to be initialized using the MerlinCamera class. The constructor requires the hostname of the
detector system.

Std capabilities

This plugin has been implemented with the mandatory capabilites, with some limitations due to the camera server
implementation.

¢ HwDetInfo

The detector is set to full image size at startup which means a binning of 1x1. There is no hardware
binning

* HwSync
The supported trigger modes are:
— IntTrig
IntTrigMult

ExtTrigSingle

ExtTrigMult

70 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Testing

This is a simple python test program:

from Lima import Merlin
from Lima import Core
import time

camera = Merlin.Camera ('<hostname>")
interface = Merlin.Interface (camera)
control = Core.CtControl (interface)

acqg = control.acquisition ()

check its OK

print camera.getDetectorType ()
print camera.getDetectorModel ()
print camera.getSoftwareVersion ()

nframes=5

acgtime=3.0

setting new file parameters and autosaving mode
saving=control.saving /()

saving.setDirectory (" /home/grm84/data")
saving.setFramesPerFile (nframes)
saving.setFormat (Core.CtSaving.HDFD5)
saving.setPrefix ("merlin_ ")

saving.setSuffix (".hdf")

saving.setSavingMode (Core.CtSaving.AutoFrame)
saving.setOverwritePolicy (Core.CtSaving.Append)

do acquisition
acg=control.acquisition ()
acqg.setAcgExpoTime (acgtime)
acqg.setAcgNbFrames (nframes)

control.prepareAcql()
control.startAcq()

wait for last image (#4) ready
lastimg = control.getStatus () .ImageCounters.LastImageReady
while lastimg !=nframes-1:

time.sleep(0.01)

lastimg = control.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = control.ReadImage (0)

7.3. Linux Only 71

Lima Documentation, Release 1.9.8

7.3.14 PIXIRAD (PX1 and PX8) camera plugin

PWR48-8A

PIXIRAD-1

Tap:
The first commercial PIXIRAD-1 module,

. Side:

Inside of PIXIRAD-1 during its commissioning

phase. The unit contains:

» the Gigabit Ethernet DAQ,

« the generation of High and Low Voltages

supply, i

= the distribution and the codling control.
Externally only a 12 V power supply (laptop
type) is needed.

72

Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Introduction

PIXIRAD Imaging Counters s.r.1. is an INFN Spin-off company introducing an innovative, high quality X-ray imaging
sensor with intrinsic digital characteristics. It is based on Chromatic Photon Counting technology and represents a
radical leap forward compared to the standard methods currently on the market.

The PIXIRAD imaging sensors are able to count individually the incident X-ray photons and to separate them in real
time according to their energy (two color images per exposure).

* Global count rate > 200 GHz
* Energy range 1-100 keV
* Energy resolution better than 2 keV (FWHM) @20 keV

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_PIXIRAD=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera has to be initialized using the Pixirad: : Camera class. The default constructor does accept parameters:

Std capabilities

This plugin has been implement in respect of the mandatory capabilites but with some limitations which are due to the
camera and SDK features. We only provide here extra information for a better understanding of the capabilities.

* HwDetInfo
TODO
* HwSync
* The minimum latency time is 1 ms.
* The supported trigger modes are depending of the chosen frame mode:
— IntTrig
— ExtTrigMult

7.3. Linux Only 73

Lima Documentation, Release 1.9.8

Optional capabilities

 HwReconstruction

TODO

Specific control parameters

Some specific parameters are available within the camera hardware interface. Those parameters should be used care-

fully, please refer to the camera SDK (or user’s guide) documentation for further information.

void autocalibration();

void setHighThresholdO (float t);
void getHighThresholdO (floats& t) ;

void setLowThresholdO (float t);
void getLowThresholdO (floats t) ;

void setHighThresholdl (float t);
void getHighThresholdl (floats& t) ;

void setLowThresholdl (float t);
void getLowThresholdl (floats t) ;

void setDeadTimeFreeMode (Camera: :DeadTimeFreeMode dtf) ;
void getDeadTimeFreeMode (Camera: :DeadTimeFreeMode &dtf) ;

void setNbiMode (Camera: :SensorConfigNBI nbi) ;
void getNbiMode (Camera: :SensorConfigNBI &nbi) ;

void setAsicMode (Camera: :SensorConfigASIC asic);
void getAsicMode (Camera: :SensorConfigASIC &asic);

void setHybridMode (Camera: :SensorConfigHybrid hybrid);
void getHybridMode (Camera: :SensorConfigHybrid &hybrid);

void setSensorConfigBuild(Camera: :SensorConfigBuild build);
void getSensorConfigBuild (Camera::SensorConfigBuild &build);

void setRunConfigMode (Camera: :RunConfigMode mode) ;
void getRunConfigMode (Camera: :RunConfigMode &mode) ;

void setCoolingTemperatureSetpoint (float t);
void getCoolingTemperatureSetpoint (floats t) ;

void setCoolingMode (Camera: :CoolingMode mode) ;
void getCoolingMode (Camera: :CoolingMode &mode) ;

void setHighVoltageBiais (float hv);
void getHighVoltageBiais (floats& hv) ;

void setHVBiasModePower (Camera: :HVBiaisPower mode) ;
void getHVBiasModePower (Camera: :HVBiaisPower &mode);

void setHVBiasMode (Camera: :HVMode mode) ;

(continues on next page)

74 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

void getHVBiasMode (Camera: :HVMode &mode) ;

void setHighVoltageDelayBeforeOn (float sec);
void getHighVoltageDelayBeforeOn (floaté& sec);

void setHVRefreshPeriod (int nbOfImages);
void getHVRefreshPeriod (int& nbOfImages);

void setDelayBetweenFrames (int delayms);
void getDelayBetweenFrames (int& delayms);

void setColorMode (Camera: :ColorMode color);
void getColorMode (Camera: :ColorMode &color);

void setTrsfMode (Camera: : TrsfMode mode) ;
void getTrsfMode (Camera: :TrsfMode &mode) ;

// UDP
void setNCyclesUdpDelay (int nbcycles);
void getNCyclesUdpDelay (int& nbcycles);

void setSyncOutFunction (Camera: :SyncOutFunction mode) ;
void getSyncOutFunction (Camera: :SyncOutFunction &mode) ;

void setSyncOutPol (Camera: :Polarity mode) ;
void getSyncOutPol (Camera::Polarity &mode);

void setSyncInPol (Camera::Polarity mode) ;
void getSyncInPol (Camera::Polarity &mode);

// Weather variable extracted from UDP stream, needs get/set
void getTemperaturePeltierCold(float& information);

void getTemperaturePeltierHot (floaté information);

void getHighVoltageTension (floats information);

void getBoxHumidity (floaté& information);

void getBoxTemperature (float& information);

void getPeltierPower (float& information);

void getAlarmTempTooHot (bool& information);

void getAlarmTempTooHotEnabled (bool& information);
void getAlarmTempTooCold (bool& information);

void getAlarmTempTooColdEnabled (bool& information);
void getAlarmHumidity (bool& information);

void getAlarmHumidityEnabled (bool& information);

Basic network configuration

The camera has 192.168.0.1/24 adress. The detector pc has to be configured likewise. The recommended option is to

have one good quality network interface dedicated to the pixirad, and one for the rest of the world.

¢ Case one (Recommended), dedicated interface:

auto ethl
iface ethl inet static
address 192.168.0.100

(continues on next page)

7.3. Linux Only

75

Lima Documentation, Release 1.9.8

(continued from previous page)

netmask 255.255.255.0
mtu 1500

 Case two, one interface, with a router handling two subnetworks:

Configuration with an alias on interface ethO:

auto ethO:1

iface eth0:1 inet static
address 192.168.0.100
netmask 255.255.255.0
mtu 1500

Test examples

With python

* Test directly the camera within python:

from Lima import Core
from Lima import Pixirad as PixiradAcq

* Set the number of image treatment threads according to the number of CPU available on your mighty machine :

Core.Processlib.PoolThreadMgr.get () . setNumberOfThread (20)

* Create your camera with its network settings and model (PX8 or PX1)

print "\n\n\n\n ======= INIT ======== \n"
camera PixiradAcqg.Camera("192.168.0.1", 2222, "PX8")
camera.init ()

print "\n\n\n\n ======= INTERFACE ======== \n"

camera_interface = PixiradAcqg.Interface (camera)

Set some feature (check manual)

color mode (only 1 col mode supported)
camera_interface.setColorMode (camera.COLMODE_1COLO)

Set point (more than acheavable by the peliter to have full powa):
camera.setCoolingTemperatureSetpoint (-50)

Set some energy thresholds (check manual, as they will fall in gain level,
— (ranges of energy).

camera.setLowThreshold0 (10)

camera.setHighThresholdO (60)

camera.setLowThresholdl (10)

camera.setHighThresholdl (60)

Some high tension management

camera.setHighVoltageBiais (2100)

camera.setHVBiasModePower (1)

camera.setHighVoltageDelayBeforeOn (3)
camera.setHVRefreshPeriod (1000) ;

some ethernet interface

camera_interface.setTrsfMode (camera.UNMOD)

76 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Get control over things:

print "\n\n\n\n ======= CONTROL ======== \n"

control = Core.CtControl (camera_interface)

set how much you want lima to buffer memory for treatment.
control.buffer () .setMaxMemory (70)

Get the object with whom you will play

print "\n\n\n\n ======= ACQUISITION OBJECT ======== \n"
acq = control.acquisition{()

Define trigger:

acqg.setTriggerMode (Core.IntTriqg)

#acq.setTriggerMode (Core.ExtTrigMult)

save somewhere

saving = control.saving()
pars=newsaving.getParameters ()
pars.directory="'/tmp/test’
pars.prefix=basename

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

Take images !

expo time for one frame
acqg.setAcgExpoTime (0.01)
number of frames:
acqg.setAcgNbFrames (10)

get it !
control.prepareAcql() ;
control.startAcqg()

pretty ones now !

Take many (100) images and accumulate them to have better stats and one_
—~1Iimage written:

acq.setAcgMode (Core.Accumulation)
Max expo time per frame:
acq.setAccMaxExpoTime (0.01)

Total time for the accumulation:
acq.setAcgExpoTime (1) ;

how many accumulated images:
acqg.setAcgNbFrames (1)

get them all and keep one:
control.prepareAcql() ;
control.startAcqg()

7.3. Linux Only

77

Lima Documentation, Release 1.9.8

With Tango

* Properties

1 = PX8 // or PX1
= 192.168.0.1
r = 2222

initial_mode

ip_addre

port_numbe

PyTango client connection examples:

import PyTango

pixi.cooling_temperature_setpoint = -50
pixi.high_voltage_biais = 2100

pixi.color_mode = 'COLMODE_1COLO'
pixi.low_threshold0 = 1
pixi.high_threshold0 = 99
pixi.low_thresholdl = 1
pixi.high_thresholdl = 99
#pixi.sensor_config build = 'PX8'
pixi.h_v_bias_mode_power = 1
pixi.trsf_mode = "UNMOD"
limaccd.buffer_max_memory = 80
limaccd.acqg_nb_frames = 0
limaccd.acqg_expo_time = 0.01
limaccd.preparelAcq()
limaccd.startAcq()

pixi = PyTango.DeviceProxy ("d05/pixirad/pixirad")
limaccd = PyTango.DeviceProxy ("d05/pixirad/pixirad8™)

pixi.dead_time_free_mode = 'DEAD_TIME_FREE_MODE_OFE'

Advanced configuration and optimization (optional)

The camera will send the images as small (1490) udp datagrams, as fast as it can, nearly saturating the bandwidth of
the 1Gb ethernet link. Bad network cards, or high latency systems will result in a loss of part of the image. If this
happens, several points needs checking. The ethernet card driver might drop packets (and as they are UDP, there won’t
be any chace to see them). The linux kernel UDP buffer might saturate and willingly drop packets (but you knows it
at least). In this case, it means that your reading loop (reading from the linux udp buffer) is too slow.

Here are a couple of options:
* Using FIFO realtime mode can help.

* Tuning network buffers can help.

* Changing ethernet card can save your skin, and avoid you loosing weeks fine tuning muddy cards.

Realtime mode

In : /etc/security/limits.conf add :

username - rtprio 5

In soft :

78

Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

pthread_t this_thread = pthread_self();
struct sched param params;

params.sched_priority = 5;
ret pthread_setschedparam(this_thread, SCHED_FIFO, ¶ms);
if (ret != 0) { std::cout << "Check /etc/security/limits.conf " << std::endl; }

Kernel tuning

man udp

Change in /etc/sysctl.conf and validate with sysctl -p

net.core.rmem_max = 256217728
net.core.wmem_max 256217728
net.ipv4d.udp_mem = 131072 262144 524288
net.ipv4.udp_rmem_min = 65536
net.core.netdev_max_backlog = 65536
net.core.somaxconn = 1024

Network card driver tuning

ethtool —-g ethl
Ring parameters for ethl:
Pre—-set maximums:

RX: 4096

RX Mini: 0

RX Jumbo: 0

TX: 4096

Current hardware settings:

RX: 512 <<LKLKLL =====
RX Mini: 0

RX Jumbo: 0

TX: 512

Increased with :

ethtool -G ethl rx 4096

Troubleshootings

UDP debug tips

If you suspect drop of UDP datagram due to a too small kernel buffer (the plugin is too slow to treat the buffer, it filled
and drop frames)

cat /proc/net/udp

And check the drop column.

7.3. Linux Only 79

Lima Documentation, Release 1.9.8

cat /proc/sys/net/core/rmem_max

tells you the buffer size
by default : 131071

Enough for 100 images:

net.core.rmem _max = 507217408

Possible problems with network adapters

List of known to work adapters
Embedded motherboard card on optiplex 980:
* Intel Corporation 82578DM Gigabit Network Connection (rev 05)
List of non working adapters
Intel pro 1000 on PCI card (82541GI) (debian 7 & 9):
¢ Intel Corporation 82541GI Gigabit Ethernet Controller
¢ Intel Corporation 82541PI Gigabit Ethernet Controller (rev 05)

Possible problems with Chillers

Symptoms : strippy images

The goal is to setup your temperature settings as to have the peltier full time @ max power. If the peltier is regulating
the temperature, stripes appears in the images. A easy way is to setup a -50C unreachable goal for the detector and
let it stabilise to wathever temperature it can reach based on chiller setting. Chiller is supposed to be set at 16degC.
Going bellow needs a hutch humidity well controlled.

7.3.15 PointGrey

POINT{GREY

80 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Introduction

“Point Grey is a world-leading designer and manufacturer of innovative, high-performance digital cameras
for industrial, life science, and traffic applications. We offer a unique and comprehensive portfolio of USB
3.0, GigE, FireWire, USB 2.0 and Camera Link products known for their outstanding quality, ease of use,
and unbeatable price-performance.”

The Lima module has been tested only with this GigE cameras models:
 Blackfly 1024x768 (model BFLY-PGE-05S2M)
Prerequisite

First, you have to install the PointGrey FlyCapture SDK. We only tested it on debian6 and using the SDK version
2.3.19 (the latest one compatible with debian6 libc).

PointGrey python module need at least the lima core module.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_POINTGREY=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you good
knowledge regarding camera features within the LIMA framework.

Camera initialisation

The camera has to be initialized using the PointGreyCamera class. The default constructor needs at least the
serial number of your camera in order to get the network connection setting up. In Addition one can provide both
packate_size and packet_delay parameters. By default no value is passed.

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations which are due to
the camera and SDK features. We only provide here extra information for a better understanding of the capabilities
for Andor cameras.

¢ HwDetInfo

getPixelSize(): the method just returns -1, it has to be implemented in further version. get/setimageType(): the
plugin only supports Bpp8 and Bpp16

* HwSync

get/setTriggerMode(): Depending of the camera model, but some can not support any trigger mode. Otherwise
the only implemented modes are IntTrig and ExtTrigSingle. IntTrigMult is normally a mandatory mode (for any
camera) and will be implemented in next version.

7.3. Linux Only 81

Lima Documentation, Release 1.9.8

Optional capabilities

None has been implemented for this camera plugin.

Specific control parameters

Some specific paramaters are available within the camera hardware interface. Those parameters should be used care-
fully and one should refer to the camera SDK (or user’s guide) documentation for a better understanding.

* get/setPacketSize()
* get/setPacketDelay()
* get/setGain()

* get/setAutoGain()

» getGainRange()

The following parameters can break the synchronisation with the LIMA HwSync layer by changing the camera internal
exposure time.

 get/setAutoExpTime()
* get/setFrameRate()

* get/setAutoFrameRate()

Network Configuration
* Depending on your network infrastructure you will need to configure a fix IP address for the camera or use a
DHCEP setup instead.

The linux SDK provides a configuation tool called GiGEConfigCmd. The Windows SDK version provides a
graphical tool, GigEConfigurator.exe.

* Then in the PointGrey Tango device set the property camera_serial using the camera serial number (sticked
on the camera).

e If you are running the server with linux kernel >= 2.6.13, you should add this line into etc/security/
limits.conf. With the following line, the acquisition thread will be in real time mode:

USER_RUNNING_DEVICE_SERVER - rtprio 99

How to use

This is a python code example for a simple test:

from Lima import PointGrey
from lima import Core

cam = PointGrey.Camera (13125072)
hwint = PointGrey.Interface (cam)

control = Core.control (hwint)

acqg = control.acquisition()

(continues on next page)

82 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

configure some hw parameters
hwint.setAutoGain (True)

setting new file parameters and autosaving mode
saving=control.saving()

pars=saving.getParameters ()
pars.directory="'/buffer/1cbl18012/opisg/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

now ask for 10ms sec. exposure and 100 frames
acq.setAcgExpoTime (0.01)
acqg.setNbImages (100)

control.prepareAcq()
control.startAcq()

wait for last image (#99) ready
lastimg = control.getStatus () .ImageCounters.LastImageReady
while lastimg !=99:

time.sleep(.01)

lastimg = control.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = control.ReadImage (0)

7.3.16 Prosilica

Industrial
Smart & Flexible

Entry Level
Simple & Easy

7 gy
Scmpiy iy

High-End
Fast & Sharp

7.3. Linux Only

83

Lima Documentation, Release 1.9.8

Introduction
AVT offers a large choice of FireWire and GigE cameras for machine vision, computer vision and other industrial

or medical applications. Cameras by AVT and Prosilica include sensitive machine vision sensors (CCD and CMOS,
VGA to 16 Megapixels) and fit a wide range of applications.

The Lima module as been tested with color and B/W GigE camera.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_PROSILICA=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you good
knowledge regarding camera features within the LIMA framework.

Camera initialisation

The camera will be initialized by creating a :cpp:Prosilica: : Camera object. The contructor sets the camera with
default parameters, only the ip address or hostname of the camera is mandatory.

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations which are due to
the camera and SDK features. Only restriction on capabilites are documented here.

* HwDetlnfo
getCurrlmageType/getDeflmageType(): it can change if the video mode change (see HwVideo capability).
setCurrlmageType(): It only supports Bpp8 and Bpp16.

* HwSync
get/setTrigMode(): the only supported mode are IntTrig, IntTrigMult and ExtTrigMult.

Optional capabilities

In addition to the standard capabilities, we make the choice to implement some optional capabilities which are sup-
ported by the SDK. Video and Binning are available.

* HwVideo
The prosilica cameras are pure video devices, so only video format for image are supported:
Color cameras ONLY
— BAYER_RGS8

84 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

- BAYER_RGI6
- RGB24
- BGR24
Color and Monochrome cameras
- Y8
Use get/setMode() methods of the cpp::class::Video object (i.e. CtControl::video()) to read or set the format.
¢ HwBin

There is no restriction for the binning up to the maximum size.

Configuration
 First you have to setup ip address of the Prosilica Camera with CLIpConfig located in camera/
prosilica/sdk/CLIpConfig
* list of all cameras available : CLIpConfig -1 (If you do not see any camera, that’s bad news!)

e finally setipadd: CLIpConfig -u UNIQUE_NUMBER -s -i 169.254.X.X -n 255.255.255.0
-m FIXED (It’s an example!)

* Then in the Prosilica Tango device set the property cam_ip_address to the address previously set.
That’s all. ...

How to use

This is a python code example for a simple test:

from Lima import Prosilica
from lima import Core

cam = Prosilica.Camera("192.169.1.1")

hwint = Prosilica.Interface (cam)
ct = Core.CtControl (hwint)

acq = ct.acquisition{()
set video and test video

video=ct.video ()

video.setMode (Core.RGB24)
video.startLive ()
video.stopLive ()

video_img = video.getLastImage ()

set and test acquisition

setting new file parameters and autosaving mode
saving=ct.saving()

pars=saving.getParameters ()
pars.directory='/buffer/1cbl18012/opisg/test_lima'
pars.prefix="testl '

(continues on next page)

7.3. Linux Only 85

Lima Documentation, Release 1.9.8

(continued from previous page)

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.TIFF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

acqg.setAcgExpoTime (0.1)
acqg.setNbImages (10)
ct.prepareAcq()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus() .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(0.01)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.3.17 MarCCD

86

Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Introduction

The SX165 features a round, 165 mm diameter active area, and a versatile, high resolution CCD chip. It is the ideal
X-ray detector for research applications with both synchrotrons and rotating anode X-ray sources.

Prerequisite

The MarCCD software server should be started on the MarCCD host computer, by running the command:

$ marccd -r

Then you can launch your lima/marccd client on another host, as the MarCCD server can be reached by network

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_MARCCD=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you good
knowledge regarding camera features within the LIMA framework.

Camera initialisation

There are 4 parameters to be filled by your Lima client:
¢ The IPAddress of the host where the marccd server is running
* The port of the marccd server process
» The detector target path: the path where will be saved the marccd image files

* Reader timeout: in ms, the timeout after which the plugin will be in fault if no marccd image file is present

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations according to some
programmer’s choices. We only provide here extra information for a better understanding of the capabilities for the
MarCCD camera.

* HwDetlInfo
— Max image size is : 4096 * 4096
— 16 bit unsigned type is supported
e HwSync
— trigger type supported are:

* IntTrig

7.3. Linux Only 87

Lima Documentation, Release 1.9.8

Optional capabilities

* HwBin
-2%2
—4%4
- 8*8

* HwRoi

TODO

Configuration

No Specific hardware configuration is needed.

How to use

Here is the list of accessible fonctions to configure and use the MarCCD detector:

void getDetectorImageSize (Size& size);

void setImagePath(const std::stringé& path);

const std::strings& getImagePath (void) ;

void setImageFileName (const std::string& imgName) ;
const std::string& getImageFileName () ;

void setImagelndex (int newImgIdx) ;

int getImageIndex();

int getFirstImage();

bool isStopSequenceFinished();
void saveBGFrame (bool) ;

void setBeamX (float) ;
float getBeamX();

void setBeamY (float) ;
float getBeamY () ;

void setDistance (float);
float getDistance();

void setWavelength (float);
float getWavelength();

7.3.18 Rayonix HS camera

rayo“lx High-performance X-ray technology

88 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Introduction

The MX-HS series from Rayonix incorporates the new, exclusive HS frame-transfer technology for high speed X-ray
data collection without compromising resolution or data quality. The result is a new type of high speed and ultra-low
noise area detector that delivers the highest performance available for X-ray diffraction applications.

The Rayonix MX-HS detectors are ideal for taking advantage of high brilliance synchrotron sources, or for any other
high frame rate application. Examples include: high throughput protein crystallography, Laue diffraction, time-
resolved or static small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), powder diffraction,
X-ray computed tomography (CT), X-ray imaging, and coherent diffraction imaging (CDI). With no count rate limi-
tation, these detectors are also ideal for XFEL applications.

The Lima module as been tested only with the following models :

e MX170-HS (2x2 mdules)
Prerequisite
The Rayonix HS detector is been delivered today with its own control computer, a powerful computer embedded at

leat 8GB of RAM, dual 4-Core CPU (8 cores) and a GPU card for the online image correction (background, flatfield
...). The computer is running redhat entprise Linux 6 (64bits).

The rayonix SDK is preinstalled on the detector node under the directory /opt/rayonix.
There is no special prerequisite, you can test that the device works properly by running the rayonix GUI, caxpure.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_RAYONIXHS=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities
Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms

to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera has to be initialized using the RayonixHsCamera class. The default constructor does not need any input
parameter.

7.3. Linux Only 89

Lima Documentation, Release 1.9.8

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations which are due to
the camera and SDK features. We only provide here extra information for a better understanding of the capabilities.

¢ HwDetInfo

The detector is set to full image size at startup which means a binning of 1x1.

Note: The recommended binning for most of the experiment is 2x2.

* HwSync

¢ The minimum latency time is 1 ms.

* The supported trigger modes are depending of the chosen frame mode. There are:
— IntTrig

IntTrigMult

ExtTrigSingle
ExtTrigMult (only for SINGLE frame mode)

ExtGate (only for SINGLE frame mode)
ExtTrigReadout (only for FAST_TRANSFER frame mode).

Optional capabilities

e HwBin

The supported hardware binning are 2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9 and 10x10. By increasing the
binning factor you can increase the readout speed from 2.6 fps to 140 fps which corresponds respectively to a
pixel size of 44um and 440 um.

¢ HwShutter

The Rayonix HS detectors provides 2 output channels one can choose a different source for each (see specific
control parameters for more details about the output source control). For the SHUTTER source both opening
and closing delay can be set.

The Rayonix HS shutter capability only supports two modes:
— ShutterAutoFrame

— ShutterManual

Specific control parameters

Some specific paramaters are available within the camera hardware interface. Those parameters should be used care-
fully and one should refer to the camera SDK (or user’s guide) documentation for a better understanding.

* get/setFrameTriggerType(type): signal type for the frame trigger input (channel #1)

* get/setSequenceGateSignal Type(type): signal type for the gate input (channel #2), The supported signal types:
* OPTO

OPTO_INVERTED

920 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

* CMOS

* CMOS_PULLDOWN

« CMOS_PULLUP

* CMOS_PULLDOWN_INVERTED
* CMOS_PULLUP_INVERTED

* SOFTWARE

* get/setOutputSignalType(channel, type): the signal type for the output channel (CHANNEL_1 or CHAN-

NEL_2)

* get/setOutputSignallD(channel, id): the source id for the output channel, possible sources are:

- ID_SHUTTER
ID_INTEGRATE
— ID_FRAME

- ID_LINE

— ID_SHUTTER_OPENING
— ID_SHUTTER_CLOSING
- ID_SHUTTER_ACTIVE

— ID_TRIGGER_RISE_WAIT
— ID_TRIGGER_RISE_ACK
— ID_TRIGGER_FALL_WAIT
- ID_TRIGGER_FALL_ACK

— ID_TRIGGER_2_RISE_WAIT
— ID_TRIGGER_2_RISE_ACK

— ID_INPUT_FRAME
— ID_INPUT_GATE

« get/setElectronicShutterEnabled(): active or unactive the electronic shutter

* get/setCoolerTemperatureSetpoint(): the cooler temperature set-point

* get/setSensorTemperatureSetpoint(): the sensor temperature set-point

 get/setSensorTemperature(): the detector measured temperature
* get/setCooler(): stop or start the cooler controller
* get/setVacuumValve(): close or open the vacuum valve

* get/setFrameMode(): modes are SINGLE or FAST_TRANSFER.

Warning: in FAST_TRANSFER mode the latency time is disabled and it has a fixed value of 1 ms which
corresponds to the readout time. In addition to this the supported trigger mode will depend on the frame
mode. The list of supported trigger modes is available in this document below.

7.3. Linux Only

91

Lima Documentation, Release 1.9.8

Configuration

Cabling

The detector head should be connected to the detector computer on the cameralink and USB links. You must connect
the USB on the PCI board (not the motherboard ones) and the cameralink on the first channel, the top connector.

Cooling

For an optimized condition wit dark current the detector has to be cooled down, the sensor temperature set-point should
be at -120 deg and the cooler temperature set-point at -90 deg Celsuis. And of course the cooler controller should be
started.

How to use

This is a simple python test program:

from Lima import RayonixHs
from lima import Core

cam = RayonixHs.Camera ()
hwint = RayonixHs.Interface (cam)
control = Core.CtControl (hwint)

acqg = control.acquisition ()

configure some hw parameters
sens_temp = hwint.getSensorTemperature ()
cool_temp = hwint.getCoolerTemperatureSetpoint ()
if sens_temp > -50:
print " Hoops, detector is not cooled down, temp = ", sens_temp

setting new file parameters and autosaving mode
saving=control.saving ()

pars=saving.getParameters ()
pars.directory='/somewhere/"'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

set a new binning to increase the frame rate
image = control.image ()
image.setBin (Core.Bin(2,2))

now ask for 10ms sec. exposure and 100 frames
acqg.setAcgExpoTime (0.01)
acqg.setNbImages (100)

control.prepareAcq ()
control.startAcqg()

(continues on next page)

92 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

wait for last image (#x199) ready
lastimg = control.getStatus () .ImageCounters.LastImageReady
while lastimg !=99:

time.sleep (1)

lastimg = control.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = control.ReadImage (0)

7.3.19 SlisDetector camera

Introduction

The PSI/SLS Detector Group has developed a family of X-ray detectors: Mythen, Pilatus, Gotthard, Eiger, Moench,
Jungrau, among others. Most of them are controlled through Ethernet interfaces, with optional dedicated data link(s).
A common protocol has been developed to control these detectors, based on the slsDetector class. A separate software
entity receives and dispatch the data: sisReceiver. The SlsDetector LIMA plugin instantiates the necessary software
objects to perform data aquisitions with the detectors supported by the slsDetectorsPackage.

The current implementation only works with the PSI/Eiger detectors.

Prerequisite

The slsDetectorPackage-v2.3.x is needed by the SlsDetector LIMA plugin. As explained in installation, the slsDe-
tectorPackage is included as a submodule in the SlsDetector camera plugin. It will be automatically compiled and
installed during the LIMA build procedure.

In addition to that, a configuration file, containing the commands necessary to initialise both the slsDetector” and
*slsReceiver instances, is required.

The library protocol uses Unix System-V IPC shared memory blocks to exchange information between processes. The
segments, referred to by keys matching hex 000016xx, must be owned by the user running the plugin, if it is not root.
The following command, which removes the existing segments, must be run by the segments’ owner (or roo0t) so they
can be deleted/created by another user:

ipcs —m | \

grep —-E '"0x000016[0-9a-z]1{2}"' | \
awk '{print $2}' | while read m; do \
ipcrm -m Sm; \
done

7.3. Linux Only 93

Lima Documentation, Release 1.9.8

High-performance Acquisitions

High-performance acquisitions require a specific backend computer setup. Please refer to the installation.

Installation & Module configuration

* Follow the steps indicated in installation
As a reference, see:

¢ linux_installation

¢ linux_compilation

* PyTango Device Server

Initialisation and Capabilities

In order to help people to understand how the camera plugin has been implemented in LImA this section provides
some important information about the developer’s choices.

Camera initialisation

The SlsDetector plugin exports two kind classes: one generic SlsDetector::Camera class, with the common inter-
face to slsDetector and slsReceiver classes, and detector-specific classes, like SlsDetector::Eiger which manage the
particularities of each model.

First, the SlsDetector::Camera must be instantiated with the configuration file, and once the connection to the detector
is established, a specific class is created depending on the detected type:

cam = SlsDetector.Camera (config_fname)
if cam.getType () == SlsDetector.Camera.EigerDet:
eiger = SlsDetector.Eiger (cam)
else:
raise RuntimeError ("Non-supported type: " % cam.getType())
hw_inter = SlsDetector.Interface (cam)

ct = Core.CtControl (hw_inter)

The raw images returned by the slsReceiver class might need to be reconstructed, like in the case of the PSI/Eiger
detector. A LImA software reconstruction task must be then created from the LImA plugin and registered to the
Core::CtControl layer:

if cam.getType() == SlsDetector.Camera.EigerDet: corr = eiger.createCorrectionTask()
ct.setReconstructionTask(corr)

94 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Std capabilites

This plugin has been implemented in respect of the mandatory capabilites but with limitations according due to the
detector specific features and with some programmer’s choices. We do not explain here the standard Lima capabilites
but you can find in this section the useful information on the SlsDetector specfic features.

* HwDetlnfo
TODO
* HwSync
The following trigger modes are currently implemented:
e IntTrig
» ExtTrigSingle
» ExtTrigMult
* ExtGate

The minimum latency_time and the max_frame_rate are automatically updated depending on the PixelDepth (4, 8, 16,
32), the ClockDiv (Full-, Half-, Quarter-, SuperSlow-Speed), and the ReadoutFlags (Parallel, Non-Parallel).

Optional capabilites

In addition to the standard capabilities, we make the choice to implement some optional capabilities in order to have
an improved simulation.

* HwShutter
Not implemented
* HwRoi
Not implemented
* HwBin

Not implemented

Configuration

The main configuration will consist in providing the correct config file file to the slsDetector API. As mentioned
before, the file is a list of commands accepted by sls_detector_put, and it should also work with the slsDetectorGui
application.

Two important parameters define the image frame dimension:
* PixelDepth:
— 4 bit (not implemented yet)
- 8bit
— 16 bit
- 32 bit
* RawMode:

If set to True, the image is exported to LIMA as given from the Receiver(s), without any software reconstruction.

7.3. Linux Only 95

Lima Documentation, Release 1.9.8

How to use

The LimaCCDs Tango server provides a complete interface to the SlsDetector plugin so feel free to test.

For a quick test one can use Python, this a short code example to work with the PSI/Eiger detector:

from Lima import SlsDetector
from Lima import Core

import time

import sys

config_fname = sys.argv[l]
cam = SlsDetector.Camera (config_fname)
if cam.getType () != SlsDetector.Camera.EigerDet:
raise RuntimeError ("Non-supported type: " % cam.getType())
eiger = SlsDetector.Eiger (cam)
hw_inter = SlsDetector.Interface (cam)
ct = Core.CtControl (hw_inter)

corr = eiger.createCorrectionTask ()
ct.setReconstructionTask (corr)

acq = ct.acquisition{()

setting new file parameters and autosaving mode
saving = ct.saving()

pars = saving.getParameters ()
pars.directory = '/tmp'

pars.prefix = 'test_slsdetector_ '
pars.suffix = '.edf'

pars.fileFormat = Core.CtSaving.EDF
pars.savingMode = Core.CtSaving.AutoFrame
saving.setParameters (pars)

now ask for 0.2 sec. exposure and 10 frames
acq.setAcgExpoTime (0.2)
acqg.setAcgNbFrames (10)

ct.prepareAcq()
ct.startAcqgl()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg != 9:

time.sleep(0.1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

cleanup in good order
import gc

del acg; gc.collect ()
del ct; gc.collect ()
del corr; gc.collect ()
del eiger; gc.collect ()

(continues on next page)

96 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

del hw_inter; gc.collect()
del cam; gc.collect()

A more complete test_slsdetector_control.py Python script can be found under the camera/slsdetector/test directory.

7.3.20 Ueye

= =
US:
I m It's so easy

Introduction

Industrial Cameras for digital imaging and visualization (USB,GigE).
home site: http://www.ids-imaging.com/

Installation & Module configuration

First, you have to install the Ueye SDK. See the sdk README provide in the ueye module
Then, follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_UEYE=true

For the Tango server installation, refers to PyTango Device Server.

7.3. Linux Only 97

http://www.ids-imaging.com/

Lima Documentation, Release 1.9.8

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized by creating a Ueye: : Camera object. The contructor sets the camera with default
parameters, only the video address (e.g. 0) of the camera is mandatory.

Std capabilites

This plugin has been implement in respect of the mandatory capabilites but with some limitations which are due to the
camera and SDK features. Only restriction on capabilites are documented here.

* HwDetlnfo
getCurrlmageType/getDeflmageType(): it can change if the video mode change (see HwVideo capability).
setCurrlmageType(): It only supports Bpp8 and Bpp16.

* HwSync
get/setTrigMode(): the only supported mode are IntTrig, IntTrigMult ExtTrigSingle and ExtTrigMult.

Optional capabilites

In addition to the standard capabilities, we make the choice to implement some optional capabilities which are sup-
ported by the SDK. Video and Binning are available.

* HwVideo
The prosilica cameras are pure video device, so video format for image are supported:
For color cameras ONLY

BAYER_RG8

BAYER_RG16

BAYER_BG8

BAYER_BGI16

- RGB24

YUV422

Color and Monochrome cameras
- Y8
- Y16
Use get/setMode() methods of the video object (i.e. CtControl::video()) to read or set the format.
¢ HwBin

There is no restriction for the binning up to the maximum size.

98 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Configuration

See the SDK README in camera/ueye/sdk/ directory.

How to use

A python code example for testing your camera:

from Lima import Ueye
from lima import Core

Fommm e +
/
v the video address

cam = Ueye.Camera (0)

hwint = Ueye.Interface (cam)
ct = Core.CtControl (hwint)

acqg = ct.acquisition{()

set video and test video, supposing we have a color camera !!

#

video=ct.video ()

video.setMode (Core.YUV422)
video.setExposure(0.1)
video.startLive ()
video.stopLive ()

video_img = video.getLastImage ()

set and test acquisition
#

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory="'/buffer/1cbl18012/opisg/test_lima'
pars.prefix="testl_'

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.TIFF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

acqg.setAcgExpoTime (0.1)
acqg.setNbImages (10)
ct.preparelAcql()
ct.startAcqgl()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(0.1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

(continues on next page)

7.3. Linux Only 99

Lima Documentation, Release 1.9.8

(continued from previous page)

read the first image
im0 = ct.ReadImage (0)

7.3.21 Ultra

Introduction

“The ULTRA Detector System enables capture of one dimensional spectra at extremely high rates. Where
CCDs were used to capture a line of data at a time, the ULTRA Detector System offers many orders of
magnitude faster time framing. ULTRA is a compact turnkey system. The data acquisition system is
attached in a compact form factor unit with gigabit Ethernet out and multiple I/O options onboard.”

Table 1: Ultra Specification
Sustained Spectral Rate | 20 KHz (spectra per second) Maximum

Frame Period <500 ns Minimum

Spectral Sensitivity 5 — 17KeV 300um thickness. 500um also available.
Output Gigabit Ethernet

Pixel configuration Si 512 linear strips @ 50um pitch

ADC Dynamic Range 16 Bit

Synchronisation Inputs | TTL or Fibre Optic

Integration Time <lus - 650us frames

TriggeringExternal (TTL or Fibre) or Internal (10KHz fixed)

Prerequisite

The default network setup is (excluding the site network connection):

1GBit Copper network for control communinication between the PC and the Ultra box.

100 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_ULTRA=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized within the :cpp::class::Ultra::Camera object. A TCP and UDP socket connections on
the 1GBit port are established

The Ultra requires the following parameters with the recommended settings:

headname = 192.168.1.100
hostname = 192.168.1.103
tcpPort =7

udpPort = 5005

npixels = 512

Std capabilites

This plugin has been implemented with respect of the mandatory capabilites but with some limitations which are due
to the camera. We only provide here extra information for a better understanding of the capabilities for Ultra cameras.

* HwDetlnfo
getCurrlmageType/getDeflmageType(): is set to Bppl6
e HwSync
get/setTrigMode(): the only supported modes are IntTrig, ExtTrigMult and IntTrigMult

Optional capabilities

TODO

7.3. Linux Only 101

Lima Documentation, Release 1.9.8

7.3.22 V412 camera

udf

I\

Introduction

V4L2 stands for Video for Linux 2. This new plugin aims to interface any v412 camera devices to LIMA framework.
Some USB Webcams have been tested successfully. Video for Linux 2 supports most of the market products, however
you may encountered some limitations using Lima, please report your problem and or your patch to lima@esrf.fr, we
will be happy to improve this code for you.

Useful links:
* http://linuxtv.org

e http://en.wikipedia.org/wiki/Video4Linux

Installation & Module configuration

Depending or your linux flavor you may need to intall/update the v412 packages.
The package libv4l-dev is mandatory to compile the lima v412 plugin.

We recommend to install a useful tool gv412, a Qt GUIL You can test your device and check supported video formats
and if the camera is supporting fixed exposure for instance.

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_V4L2=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities
Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms

to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized by creating a V412 : : Camera object. The contructor sets the camera with default
parameters, and a device path is required, e.g. /dev/video0.

102 Chapter 7. Supported Cameras

mailto:lima@esrf.fr
http://linuxtv.org
http://en.wikipedia.org/wiki/Video4Linux

Lima Documentation, Release 1.9.8

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations.

It is mainly a video controller, see HwVideoCtr10b j, with a minimum set of feature for standard acquisition. For
instance the exposure control can not be available if the camera only support the auto-exposure mode.

* HwDetlnfo
getCurrlmageType/getDeflmageType(): it can change if the video mode change (see HwVideo capability).
setCurrlmageType(): It only supports Bpp8 and Bpp16.

* HwSync
get/setTrigMode(): Only IntTrig mode is supported.

Optional capabilites

The V4L2 camera plugin is a mostly a Video device which provides a limited interface for the acquisition (i.e, expo-
sure, latency ..).

e HwVideo
The v412 cameras are pure video device we are supporting the commonly used formats:
Bayer formats
— BAYER_BGS8
- BAYER_BGI16
Luminence+chrominance formats
YUV422
UYV41l1
YUV444
- 1420
RGB formats
- RGB555
RGB565
BGR24
RGB24
- BGR32
- RGB32

Monochrome formats
- Y8
- Y16
- Y32
- Y64

7.3. Linux Only 103

Lima Documentation, Release 1.9.8

Use get/setMode() methods of the video object (i.e CtControl::video()) for accessing the video format. The lima
plugin will initialise the camera to a preferred video format by choosing one of the format the camera supports
but through ordered list above.

Configuration
Simply plug your camera (USB device or other interface) on your computer, it should be automatically detected and a

new device file is created like /dev/video0. The new device is maybe owned by root : video, so an other user
cannot access the device. In that case you should update /et c/group to add that user to the video group.

How to use

This is a python code example for a simple test:

from Lima import v412
from lima import Core

fom—m +
V412 device path |
v

cam = v4l2.Camera ('/dev/videoO")

hwint = v41l2.Interface (cam)
ct = Core.CtControl (hwint)

acq = ct.acquisition{()

set and test video

#

video=ct.video ()

to know which preferred format lima has selected
print (video.getMode())

video.startLive ()

video.stopLive ()

video_img = video.getLastImage ()

set and test an acquisition

#

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory="'/buffer/1cbl18012/opisg/test_lima'
pars.prefix="testl_'

pars.suffix=".edf'
pars.fileFormat=Core.CtSaving.TIFF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

now ask for and 10 frames

(continues on next page)

104 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

acq.setNbImages (10)

ct.prepareAcq()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep (1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.3.23 Xpad

Introduction

The XPAD detector is based on the photon counting technology providing a quasi noiseless imaging as well as a very
high dynamic range and a fast frame rate (500 images/s). This is a detector stemming from the collaboration of Soleil,
CPPM and ESRF(D2AM). It is now supported by the InXPAD company.

This plugin support the following models:
» S70,
* 5140,
* S340,
* S540

7.3. Linux Only 105

Lima Documentation, Release 1.9.8

The XPAD runs under Linux, with the help of a PCI express board from PLDA.

Prerequisite

The host where the PCI express board is installed, should have the PLDA driver installed.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized within the Xpad: : Camera object. One should pass to the constructor, the Xpad type
as a string. Possible values are:

* “IMXPAD_S707,

* “IMXPAD_S140”,
* “IMXPAD_S340”,
* “IMXPAD_S540”

Synchrone or Asynchrone acquisition should be selected with a call setAcquisitionType ().

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations according to some
programmer’s choices. We only provide here extra information for a better understanding of the capabilities for the
xpad camera.

HwDetInfo

¢ 16 or 32 bit unsigned type are supported
* the size of the image will depend of the type of Xpad

HwSync

Trigger type supported are:
¢ IntTrig
» ExtTrigSingle
» ExtGate : 1 external trigger start N internal gates (gates being configured by software)

» ExtTrigMult : N external trigger start N internal gates (gates being configured by software)

106 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Optional capabilities

There are no optional capabilities.

Configuration

No Specific hardware configuration is needed.

How to use

Here is a list of accessible fonctions to configure and use the Xpad detector:

//! Set all the config G
void setAllConfigG(const std::vector<long>& allConfigG);

e Set the Acquisition type between synchrone and asynchrone
void setAcquisitionType (short acg_type);
// ! Load of flat config of value: flat_value (on each pixel)

void loadFlatConfig(unsigned flat_value);
//! Load all the config G
void loadAllConfigG (unsigned long modNum, unsigned long chipId , unsigned longx_
—config_values);
//! Load a wanted config G with a wanted value
void loadConfigG(const std::vector<unsigned long>& reg_and_value);
//! Load a known value to the pixel counters
void loadAutoTest (unsigned known_value);
//! Save the config L (DACL) to XPAD RAM
void saveConfigL (unsigned long modMask, unsigned long calibId, unsigned long chipId,
—unsigned long curRow,unsigned longx values);
//! Save the config G to XPAD RAM
void saveConfigG (unsigned long modMask, unsigned long calibId, unsigned long reg,
—unsigned long* values);
//! Load the config to detector chips
void loadConfig(unsigned long modMask, unsigned long calibId);
//! Get the modules config (Local aka DACL)
unsigned short+& getModConfig();
//! Reset the detector
void reset ();
//! Set the exposure parameters
void setExposureParameters(unsigned Texp,unsigned Twait,unsigned Tinit,
unsigned Tshutter,unsigned
—Tovf,unsigned mode, unsigned n,unsigned p,
unsigned nbImages,unsigned
—BusyOutSel,unsigned formatIMG,unsigned postProc,
unsigned GP1l,unsigned GP2,
—unsigned GP3,unsigned GP4);
//! Calibrate over the noise Slow and save dacl and configg files in path
void calibrateOTNSlow (const std::string& path);
//! Calibrate over the noise Medium and save dacl and configg files in path
void calibrateOTNMedium (const std::string& path);
//! Calibrate over the noise High and save dacl and configg files in path
void calibrateOTNHigh (const std::string& path);
//! upload the calibration (dacl + config) that is stored in path
void uploadCalibration(const std::string& path);
//! upload the wait times between each images in case of a sequence of images (Twait,,
—from setExposureParameters should be 0)

(continues on next page)

7.3. Linux Only 107

Lima Documentation, Release 1.9.8

(continued from previous page)

void uploadExpWaitTimes (unsigned long *pWaitTime, unsigned size);
//! increment the ITHL
void incrementITHL () ;
//! decrement the ITHL
void decrementITHL () ;
//! set the specific parameters (deadTime,init time, shutter
void setSpecificParameters(unsigned deadtime, unsigned init,
unsigned shutter, unsigned

—ovf,
unsigned n, unsigned p,
unsigned busy_out_sel,
bool geom_corr,
unsigned GP1, unsigned
—~GP2, unsigned GP3, unsigned GP4);

//! Set the Calibration Adjusting number of iteration
void setCalibrationAdjustingNumber (unsigned calibration_adjusting_number) ;

7.3.24 Xspress3

IIIIHHIIIIIIIIIIIHIIL'IIHIII'II-'I

mmuml.'ﬂmm|m'.'.'.m||
ﬂﬂ‘ PRPRPOL L

108 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Introduction

Many solid state detectors are not limited by their intrinsic rate capability, but by the readout system connected to
them. The Quantum Detectors Xspress 3 was developed to maximise the throughput and resolution of such detectors
and remove the bottleneck at the readout stage. With output count rates of over 3 Mcps, this detector is easily 10X
faster than the systems many users have on their beamlines. Xspress 3 can open up the beamline to much faster data
collection, its dynamic range can reduce the number of scans required and save large amounts of time with attenuation
selection.

The XSPRESS3 system contains a Xilinx Virtex-5 FPGA with two embedded PowerPC processors. PPC1 manages
the DMA engines. PPC2 runs the Xilinx micro kernel and communicates to the Intel 64 bit Linux server PC by 1 GBit
Ethernet, TCP sockets. Bulk data and event lists to be histogrammed are sent from the firmware to the Server PC by
10G Ethernet, UDP.

The Software Development Toolkit (SDK) is provided for Linux only.

Prerequisite
Unpack the SDK distribution into either the camera/xspress3/sdk directory or /usr/local/lib. Then
ensure the libraries are in the LD_LIBRARY_PATH.

The SDK has shared libraries which has been compiled on recent linux kernel. g++ (GCC) 4.1.2 20080704 (Red Hat
4.1.2-50), check first you have the right kernel and libc available by compiling the test program.

The default network setup is (excluding the site network connection):

1GBit Copper network for control communinication between the PC and the XSPRESS3 box. With more than 1
XSPRESS3 box connected this network uses a ethernet switch A private network with 64 addresses allocated:

$ ifconfig ethl

ethl Link encap:Ethernet HWaddr d4:ae:52:7d:5f:84
inet addr:192.168.0.1 Bcast:192.168.0.63 Mask:255.255.255.192
inet6 addr: fe80::d6ae:52ff:fe7d:5f84/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:1567 errors:0 dropped:5766 overruns:0 frame:0
TX packets:158 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:173937 (169.8 KiB) TX bytes:37252 (36.3 KiB)
Interrupt:48 Memory:da000000-da012800

A 10GBit Fibre network for data transfer, point to point with 4 addresses allocated. With more that 1 XSPRESS3 box
there would be multiple 10G Ports on the PC with multiple 4 address range subnets:

$ ifconfig eth2

eth?2 Link encap:Ethernet HWaddr 00:07:43:05:7c:65
inet addr:192.168.0.65 Bcast:192.168.0.67 Mask:255.255.255.252
inet6 addr: fe80::207:43ff:fe05:7¢c65/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:702 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:154963 (151.3 KiB)
Interrupt:41 Memory:dd7fe000-dd7fefff

Note the carefully picked subnet masks etc and the MTU 9000 We then have a script that should be executed automat-
ically at boot.

7.3. Linux Only 109

Lima Documentation, Release 1.9.8

$ cat /etc/init.d/xspress3.sh

#!/bin/bash

static-arp

This is to register a static ARP address in the arp table at boot

Kept as simple as possible hopefully this will auto register the associated
MAC with the private network address to allow the machine to communicate with the

test boards for xspress3

Derived from work by Duncan Russell, by William Helsby
PATH=/sbin:/bin:/usr/bin:/usr/sbin

arp -1 eth2 -s 192.168.0.66 02:00:00:00:00:00

#route —-v add —-host 192.168.0.66 eth2

Setting default and max buffer sizes for networking.
sysctl -w net.core.rmem _max=1073741824

sysctl -w net.core.rmem_default=1073741824

HH o H H W W H

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_XSPRESS3=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

In order to help people to understand how the camera plugin has been implemented in LImA this section provide some

important information about the developer’s choices.

Camera initialisation

The camera will be initialized within the Xspress3: : Camera object. A TCP socket connection on the 1GBit port
is established and optionally a UDP connection on the 10Gbit port (depends on boolean constructor flag noUDP). The
ROI’s are reset, the first card in a multicard system or the single card, is set to be the master and the run flags are set
to initiate Scaler and Histogram modes. The register and configuration settings (as optimised by QD on delivery) are

uploaded to the Xspress3.

The Xspress3 requires the following parameters with the recommended settings:

nbCards = 1 (number of Xspress3 boxes)
maxFrames = 16384

baseIPaddress = "192.168.0.1"

basePort = 30123

baseMACaddress = "02.00.00.00.00.00"

nbChans = 4/6/8 (depends on the firmware)
createScopeModule = true/false

scopeModuleName = "a-name-of-your—-choice"

debug = 0 is off, 1 is on, 2 is verbose
cardIndex = 0 (for a 1 xspress system)
noUDP = true/false

directoryName = "directory containing xspress3 configuration settings"

110 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

The Xspress3::Camera contructor sets the camera with default parameters for Number of Pixels (4096), the
imageType (Bpp32), Number of Frames (1) and the trigger mode (IntTrig)

Std capabilities

This plugin has been implemented with respect of the mandatory capabilites but with some limitations which are due
to the camera and SDK features. We only provide here extra information for a better understanding of the capabilities
for Xspress3 cameras.

e HwDetlInfo

getCurrlmageType/getDefIlmageType(): is set to Bpp32

setCurrlmageType(): will not change the image type.

getMaxImageSize/getDetectorImageSize(): is defined as number of pixels + number of scalers x number
of channels, i.e. (4096+8) x 4 for a 4 channel xspress3 system

getPixelSize(): is hardcoded to be 1x1

getDetectorModel(): reads and reports the xspress3 firmware version.
* HwSync
get/setTrigMode(): the only supported modes are IntTrig, ExtGate and IntTrigMult

Optional capabilities
None

Data Format

The raw data is saved in .edf file format. Each frame is saved as it completes. To allow Lima to save both histogram
and scaler data, the latter is appended to the histogram data.

histogram scaler

[0] [0 ... 4095, 4096 ... 5003] channel 0
[1]1 [0 4095, 4096 ... 5003] channel 1
[2] [0 ... 4095, 4096 ... 5003] channel 2
[3]1 [0 4095, 4096 ... 5003] channel 3

* Camera: :readScalers (): returns the raw scaler data from the Lima buffers from the specified frame and
channel

* Camera::readHistogram(): returns the raw histogram data from the Lima buffers from the specified
frame and channel

e Camera: :setUseDtc () and Camera: :getUseDtc (): set to true will dead time correct the data re-
turned from the Lima buffers (default is false)

e Camera: :setUseHW () and Camera: :getUseHw () : set to true will return raw histogram data from the
H/W data buffers, including the current frame.

7.3. Linux Only 111

Lima Documentation, Release 1.9.8

How to use

See example in the test directory. Playback data should be extracted from the tarball.

7.3.25 XH camera

Introduction

“XH is the worlds first 50m pitch Ge Strip detector which has been designed specifically for Energy
Dispersive EXAFS (EDE). Carrying on from the CLRC development of XSTRIP1, a Si based detector
system, XH makes use of amorphous germanium (a-Ge) contact technology produced by LBNL2 and
readout ASICs developed by CLRC. XH is designed to address the issues of detection efficiency and
radiation damage that limit the effectiveness of the original XSTRIP system.”

The system is controlled from its own PC or via a TCP/IP connection from a beamline computer system.
The Lima plugin has been tested only at ESRF for a unique XH detector on BM23 and ID24 beamlines.

Prerequisite Linux OS

The plugin is only working for Linux distribution and been tested on Redhat E4 1386 and debian 6 x86_64.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_XH=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

TODO

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations which are due to
the camera and SDK features. We only provide here extra information for a better understanding of the capabilities
for Andor cameras.

* HwDetlInfo
TODO
* HwSync

112 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

TODO

Optional capabilities

In addition to the standard capabilities, we make the choice to implement some optional capabilities which are sup-
ported by the SDK and the I-Kon cameras. A Shutter control, a hardware ROI and a hardware Binning are available.

e HwShutter
TODO

* HwRoi
TODO

* HwBin
TODO

Configuration

TODO

How to use

This is a python code example for a simple test:

from Lima import Xh
from lima import Core

hostname port
cam = Xh.Camera ('xh-detector', 1972,
hwint = Xh.Interface (cam)

ct = Core.CtControl (hwint)

acqg = ct.acquisition{()

configure some hw parameters

set some low level configuration

config name
'config_xhx3")

setting new file parameters and autosaving mode

saving=ct.saving ()

pars=saving.getParameters ()

pars.directory="'/buffer/1cbl18012/opisg/test_lima'

pars.prefix="testl_'
pars.suffix=".edf’
pars.fileFormat=Core.CtSaving.EDF

pars.savingMode=Core.CtSaving.AutoFrame

saving.setParameters (pars)

now ask for 2 sec. exposure and 10 frames

acqg.setAcgExpoTime (2)
acqg.setNbImages (10)

(continues on next page)

7.3. Linux Only

113

Lima Documentation, Release 1.9.8

(continued from previous page)

ct.prepareAcql()
ct.startAcqgl()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(0.1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

114

Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

7.3.26 Zwo (Zhen Wang Optical)

7.3. Linux Only 115

Lima Documentation, Release 1.9.8

Introduction

ZWO offers a large choice of cameras for astronomical applications. The cameras are connected via USB. The
delivered driver library is available for Linux, Mac, and Windows.

The LImA module has been tested with the AST 178MM-Cool model on Linux.
Prerequisite
Installation & Module configuration

* follow first the steps for the linux installation linux_installation
» follow first the steps for the windows installation windows_installation

The minimum configuration file is config.inc :

COMPILE_CORE=1
COMPILE_SIMULATOR=0
COMPILE_SPS_IMAGE=1
COMPILE_ESPIA=0
COMPILE_FRELON=0
COMPILE_MAXIPIX=0
COMPILE_PILATUS=0
COMPILE_BASLER=0
COMPILE_PROSILICA=0
COMPILE_ROPERSCIENTIFIC=0
COMPILE_MYTHEN=0
COMPILE_ADSC=0
COMPILE_UEYE=0
COMPILE_XH=0
COMPILE_XSPRESS
COMPILE_XPAD=0
COMPILE_PERKINELMER=0
COMPILE_ANDOR=0
COMPILE_PHOTONICSCIENCE=0
COMPILE_PCO=0
COMPILE_MARCCD=0
COMPILE_POINTGREY=0
COMPILE_IMXPAD=0
COMPILE_DEXELA=0
COMPILE_ZWO=1
COMPILE_RAYONIXHS=0
COMPILE_CBF_SAVING=0
COMPILE_NXS_SAVING=0
COMPILE_FITS_SAVING=0
COMPILE_EDFGZ_SAVING=0
COMPILE_TIFF_SAVING=0
COMPILE_CONFIG=1
LINK_STRICT VERSION=0
export COMPILE_CORE COMPILE_SPS_IMAGE COMPILE_SIMULATOR \
COMPILE_ESPIA COMPILE_FRELON COMPILE_MAXIPIX COMPILE_PILATUS \
COMPILE_BASLER COMPILE_PROSILICA COMPILE_ROPERSCIENTIFIC COMPILE_ADSC \
COMPILE_MYTHEN COMPILE_UEYE COMPILE_XH COMPILE_XSPRESS3 COMPILE_XPAD COMPILE_
PERKINELMER \
COMPILE_ANDOR COMPILE_PHOTONICSCIENCE COMPILE_PCO COMPILE_MARCCD COMPILE_DEXELA
<sCOMPILE_ZWO\

3=0

(continues on next page)

116 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

COMPILE_POINTGREY COMPILE_IMXPAD COMPILE_RAYONIXHS COMPILE_CBF_SAVING COMPILE_
< NXS_SAVING \

COMPILE_FITS_SAVING COMPILE_EDFGZ_SAVING COMPILE_TIFF_SAVING COMPILE_CONFIG\

LINK_STRICT_VERSION

* start the compilation linux_compilation

* finally for the Tango server installation PyTango Device Server

Initialisation and Capabilities

In order to help people to understand how the camera plugin has been implemented in LImA this section provide some
important information about the developer’s choices.

Camera initialisation

TODO

Std capabilites

This plugin has been implement in respect of the mandatory capabilites but with some limitations according to some
programmer’s choices. We only provide here extra information for a better understanding of the capabilities for the
Zwo camera.

* HwDetlnfo
TODO

* HwSync
TODO

Optional capabilites

In addition to the standard capabilities, we make the choice to implement some optional capabilities in order to have
an improved simulation.

TODO

* BinCtrl
TODO

* BufferCtrl
TODO

* FlipCtrl
TODO

* RoiCtrl
TODO

7.3. Linux Only 117

Lima Documentation, Release 1.9.8

* ShutterCtrl
TODO
 SavingCitrl
TODO
* VideoCtrl
TODO

Configuration

TODO

How to use

The LimaCCDs tango server provides a complete interface to the zwo plugin so feel free to test.

For a quick test one can use python, is this a short code example:

from Lima import Zwo
from lima import Core
import time

cam = Zwo.Camera (0)
hwint = Zwo.Interface (cam)

control = Core.CtControl (hwint)
acq = control.acquisition()

setting new file parameters and autosaving mode

saving = control.saving()

pars = saving.getParameters()
pars.directory = '/tmp/'

pars.prefix = 'testsimul '

pars.suffix = '.edf'

pars.fileFormat = Core.CtSaving.EDF
pars.savingMode = Core.CtSaving.AutoFrame

saving.setParameters (pars)

now ask for 2 sec. exposure and 10 frames
acqg.setAcgExpoTime (2)
acqg.setNbImages (10)

control.prepareAcq ()
control.startAcqg()

wait for last image (#9) ready
lastimg = control.getStatus () .ImageCounters.LastImageReady
while lastimg != 9:

time.sleep(0.1)

lastimg = control.getStatus () .ImageCounters.LastImageReady

(continues on next page)

118 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

read the first image
im0 = control.ReadImage (0)

7.4 Windows and Linux

7.4.1 Andor SDK2 camera plugin

Craatihar #chy (Rl
B B

Wavalenaih (mm)

7.4. Windows and Linux 119

Lima Documentation, Release 1.9.8

Introduction

Andor Technology manufactuer offers a large catalogue of scientific cameras. Covered scientific applications are
low ligth imaging, spectroscopy, microscopy, time-resolved and high energy detection. Andor is providing a unique
Software Development Tool (SDK) for both Windows and Linux, supporting different interface buses such as USB,
CameraLink and also some specific acquisition PCI board.

The Lima module as been tested only with these camera models:
¢ [Kon-M and IKon-L (USB interface, Linux OS debian 6)
¢ IKon-L (USB interface, Windows XP - 32bits)

Prerequisites

Linux

First, you have to install the Andor Software developpement Kit (SDK) in the default path (/usr/local). For our tests,
we used the SDK for Linux version V2.91.30001.0 and ran the install script install_andor for which option 5
(All USB Cameras) was selected, the default installation is made under /usr/local/ with:

e /usr/local/include, header files
e /usr/local/lib, library files
* /usr/local/etc/andor, configuration files

The Linux SDK 2.91 has shared libraries which has been compiled on recent linux kernel, check first you have the
right kernel and libc available by compiling one of the example program available under examples/console. Andor
python module needs at least the lima core module.

For the USB camera the SDK is using the libusb under linux, check first your system is equiped with the libusb package
otherwise you will not compile the Andor Lima plugin.

Windows XP - 32 bits

First, you have to install the Andor Software developpement Kit (SDK) in default path (C:\\Program Files
(x86) \\Andor iKon\\Drivers).

Add the location of the file \\Lima\\camera\\andor\\sdk\\msvc\\bin\\ATMCD32D.DLL to your PATH
environment variable.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_ANDOR=true

For the Tango server installation, refers to PyTango Device Server.

120 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized within the AndorCamera object. The AndorCamera () contructor sets the camera
with default parameters for Preampifier-Gain, VerticalShiftSpeed and the ADC/HorizontalSpeed.

These parameters are optimized for the faster mode, which means the maximum gain, the “fasten recommended”
VSSpeed (i.e as returned by GetFastestRecommendedVSSpeed() SDK function call) and the ADC with the faster
Horizontal speed.

All the parameters can be set and get using the corresponding methods, the default values (max speeds and gain) can
be applied with -1 as passed value:

set/getPGain()
set/getVsSpeed()
set/getADCSpeed()
Some other methods are available but they can not be supported depending on which camera model you are using:
set/getHighCapacity()
set/getFanMode()
set/getBaselineClamp()

The above parameters, only support enumerate type for values.

Std capabilities

This plugin has been implemented in respect of the mandatory capabilites but with some limitations which are due to
the camera and SDK features. We only provide here extra information for a better understanding of the capabilities
for Andor cameras.

¢ HwDetInfo

getCurrlmageType/getDeflmageType(): the methods call the SDK GetBitDepth() function to resolve the image
data type. The bit-depth correspond to the AD channel dynamic range which depends on the selected ADC
channel. By experience and with IKon detectors we only have Bpp16 of dynamic range, but the methods can
return Bpp8 and Bpp32 as well.

setCurrlmageType(): this method do not change the image type which is fixed to 16bpp.
* HwSync
get/setTrigMode(): the only supported mode are IntTrig, ExtTrigSingle, ExtGate and IntTrigMult

7.4. Windows and Linux 121

Lima Documentation, Release 1.9.8

Optional capabilities

In addition to the standard capabilities, we make the choice to implement some optional capabilities which are sup-
ported by the SDK and the I-Kon cameras. A Shutter control, a hardware ROI and a hardware Binning are available.

¢ HwShutter

setMode(): only ShutterAuto and ShutterManual modes are supported

* HwRoi
There is no restriction for the ROI setting

¢ HwBin

There is no restriction for the Binning but the maximum binning is given by the SDK function GetMaximumBin-

ning() which depends on the camera model

Configuration

Plug your USB camera on any USB port of the computer, that’s all !

How to use

This is a python code example for a simple test:

from Lima import Andor
from lima import Core

cam = Andor.Camera (" /usr/local/etc/andor",
hwint = Andor.Interface (cam)
ct = Core.CtControl (hwint)

acqg = ct.acquisition{()

configure some hw parameters
hwint .setTemperatureSP (-30)
hwint.setCooler (True)

wait here for cooling

set some low level configuration
hwint.setPGain (2)

hwint .setCooler (True)

hwint .setFanMode (cam.FAN_ON_FULL)

hwint.setHighCapacity (cam.HIGH_SENSITIVITY)
hwint.setBaselineClamp (cam.BLCLAMP_ENABLED)

hwint.setFastExtTrigger (False)
hwint.setShutterLevel (1)

setting new file parameters and autosaving mode

saving=ct.saving ()

pars=saving.getParameters ()

pars.directory="'/buffer/1cbl8012/opisg/test_lima'

pars.prefix="testl_ '
pars.suffix="'.edf'

0)

(continues on next page)

122

Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

set accumulation mode

acg_pars= acqg.getPars ()

#0-normal, 1-concatenation, 2—accumu

acg_pars.acgMode = 2
acg_pars.accMaxExpoTime = 0.05
acq_pars.acgkExpoTime =1
acq_pars.acgNbFrames = 1

acqg.setPars (acg_pars)
here we should have 21 accumalated images per frame
print acqg.getAccNbFrames ()

now ask for 2 sec.
acqg.setAcgExpoTime (2)
acqg.setNbImages (10)

exposure and 10 frames

ct.prepareAcq()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep (1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady
read the first image

im0 = ct.ReadImage (0)

7.4.2 Basler camera

7.4. Windows and Linux

123

Lima Documentation, Release 1.9.8

Introduction

Basler’s area scan cameras are designed for industrial users who demand superior image quality and an excellent
price/performance ratio. You can choose from an area scan portfolio that includes monochrome or color models with
various resolutions, frame rates, and sensor technologies.

The Lima module has been tested only with this GigE cameras models:
* Scout
¢ Pilot
e Ace
The Lima module has been tested with Pylon SDK versions 3.2.2 and 5.0.1.

Monochrome and color cameras are supported with these SDK versions.

Installation & Module configuration

First, you have to install the Basler SDK Pylon to the default path /opt /pylon.

Then, follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_BASLER=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized by creating Basler ::Camera object. The Basler camera can be idenfified either by:
 IP/hostname (examples: ip://192.168.5.2,ip://white_beam_viewerl.esrf.fr)or
* Basler serial number (example: sn://12345678) or
* Basler user name (example: uname: //white_beam_viewerl)

In case an IP is given, the ip: // scheme prefix is optional.

Only the camera ID is mandatory.

Small example showing possible ways to initialize:

from Lima import Basler
from lima import Core

From an IP (notice ip:// prefix 1is optional)
cam = Basler.Camera('192.168.5.2")

From a basler serial number
cam = Basler.Camera('sn://12345678")

(continues on next page)

124 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

From a basler user name
cam = Basler.Camera ('uname://white_beam_viewerl")

Std capabilites

This plugin has been implemented in respect of the mandatory capabilites but with some limitations which are due to
the camera and SDK features. Only restriction on capabilites are documented here.

* HwDetlnfo
getCurrlmageType/getDefImageType(): it can change if the video mode change (see HwVideo capability).
setCurrlmageType(): It only supports Bpp8 and Bpp16.

e HwSync
get/setTrigMode(): the supported mode are IntTrig, IntTrigMult, ExtTrigMult and ExtGate.

Optional capabilites

In addition to the standard capabilities, we make the choice to implement some optional capabilities which are sup-
ported by the SDK. Video, Roi and Binning are available.

¢ HwVideo
The basler cameras are pure video device, so video format for image are supported:
Color cameras ONLY
— BAYER_RGS
- BAYER_BGS
- BAYER_RGI6
- BAYER_BGI6
- RGB24
- BGR24
- RGB32
— BGR32
- YUV4l11
- YUV422
- YUV444
Color and Monochrome cameras
- Y8
- Y16
Use get/setMode() methods of the video object (i.e. CtControl::video()) to read or set the format.
e HwBin

There is no restriction for the binning up to the maximum size.

7.4. Windows and Linux 125

Lima Documentation, Release 1.9.8

e HwRoi

There is no restriction for the Roi up to the maximum size.

Configuration

* First you need to decide how you want to reference your camera (by IP/hostname, serial number or user name)

* Second, you have to setup the IP address of the Basler Camera by using IpConfigurator (/opt/pylon/bin/
IpConfigurator) or by matching the MAC address with a choosen IP into the DHCP. If you plan to refer-
ence the camera by user name you should also set it in IpConfigurator. If you plan to reference the camera by
serial number you should note down the serial number that appears in the label of your camera.

* Then in the Basler Tango device, set the property camera_id according to the type of ID you choose (see Basler
Tango device for more details)

* If you are running the server with linux kernel >= 2.6.13, you should add this line into /etc/security/limits.conf.
With this line, the acquisition thread will be in real time mode.

USER_RUNNING_DEVICE_SERVER - rtprio 99

How to use

This is a python code example for a simple test:

from Lima import Basler
from lima import Core

=

T
\J)
Q
S
0]
o+
0]
.
N
0]

cam ip or hostname | /
v

v
cam = Basler.Camera('192.168.1.1", O, 8000)

~

hwint = Basler.Interface (cam)
ct = Core.CtControl (hwint)

acqg = ct.acquisition{()

set and test video

#

video=ct.video ()

video.setMode (Core.RGB24)
video.startLive ()
video.stopLive ()

video_img = video.getLastImage ()

(continues on next page)

126 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

(continued from previous page)

set and test an acquisition
#

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory='/buffer/1cbl18012/opisg/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.TIFF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

now ask for 2 sec. exposure and 10 frames
acqg.setAcgExpoTime (2)
acqg.setNbImages (10)

ct.prepareAcq()
ct.startAcqg()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep (1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.4.3 RoperScientific / Princeton

SC TR

7.4. Windows and Linux

127

Lima Documentation, Release 1.9.8

Introduction
This plugin control a RoperScientific/Princeton camera under Windows and Linux, using the PVCAM (Photometrics
Virtual Camera Access Method) libraries.

It is in production at SOLEIL under windows and it has been tested at Desy under Linux. Model used at SOLEIL:
PI-MTE:2048B

Prerequisite

The RoperScientific is connected to a specific computer with a PCI board. The Lima/RoperScientific client must run
on this PC.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized within the :cpp:RoperScientific: :Camera object. The camera number (as an
integer) should be given to the constructor. For example: O.

Std capabilites

This plugin has been implemented in respect of the mandatory capabilites but with some limitations according to some
programmer’s choices. We only provide here extra information for a better understanding of the capabilities for the
RoperScientific camera.

e HwDetlnfo
* Max image size is : 2048 * 2048
* 16 bit unsigned type is supported
* HwSync

Trigger type supported are:

IntTrig

ExtTrigSingle
ExtTrigMult
ExtGate

128 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Optional capabilites

e HwBin:
— all values are accepted

¢ HwRoi

Specific control parameters

Some specific paramaters are available within the camera hardware interface. Those parameters should be used care-
fully and one should refer to the camera SDK (or user’s guide) documentation for a better understanding.

e getTemperature()

* set/getTemperatureSetPoint()
* set/getGain()

* set/getInternal AcqMode()

* “FOCUS”

* “STANDARD”

* set/getSpeedTableIndex()

Configuration

No Specific hardware configuration are needed

How to use

Here is the list of accessible fonctions to configure and use the RoperScientific detector:

void setGain (long);
long getGain();

void setFullFrame (rgn_typex roi);
void setBinRoiParameters (rgn_typex roi);

void setSpeedTableIndex (unsigned) ;
unsigned getSpeedTablelndex (void);
const std::string& getADCRate (void) ;

double getTemperature();
double getTemperatureSetPoint ();
void setTemperatureSetPoint (double temperature);

Code example in python:

from Lima import RoperScientific
from lima import Core

cam = RoperScientific.Camera(0)

hwint = RoperScientific.Interface (cam)

(continues on next page)

7.4. Windows and Linux 129

Lima Documentation, Release 1.9.8

(continued from previous page)

ct = Core.CtControl (hwint)
acqg = ct.acquisition()

set some configuration
cam.setTemperatureSetPoint (0)
cam.setAdcRate (0) # 0-1MHz, 1-100KHz

setting new file parameters and autosaving mode
saving=ct.saving ()

pars=saving.getParameters ()
pars.directory="'/buffer/1cbl8012/opisg/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

now ask for 2 sec. exposure and 10 frames
acqg.setAcgExpoTime (2)
acqg.setNbImages (10)

ct.prepareAcq()
ct.startAcqgl()

wait for last image (#9) ready
lastimg = ct.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(0.1)

lastimg = ct.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = ct.ReadImage (0)

7.4.4 Simulator

130 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

Introduction

This is the official Lima camera simulator. It has been made to help you getting started with Lima and to test/play
Lima without any hardware.

The simulator provides two modes of operations:

* Frame Builder generates frames with diffraction patterns and a set of parameters can be tuned to change those
patterns like for instance the number and position of gaussian peaks;

¢ Frame Loader loads frames from files.

Both modes have a preteched variant, where the frames are preteched in memory before the acquisition is started. This
feature allows to simulate high frame rates detectors.

Prerequisite

There is no special prerequisite, the simulator can be compiled and tested on both Linux and Windows platforms.

Installation & Module configuration

Follow the generic instructions in Build and Install. If using CMake directly, add the following flag:

-DLIMACAMERA_SIMULATOR=true

For the Tango server installation, refers to PyTango Device Server.

Initialisation and Capabilities

Implementing a new plugin for new detector is driven by the LIMA framework but the developer has some freedoms
to choose which standard and specific features will be made available. This section is supposed to give you the correct
information regarding how the camera is exported within the LIMA framework.

Camera initialisation

The camera will be initialized within the Camera object. The Camera () constructor takes an optional mode param-
eter.

This simulator plugin architecture is based on the FrameGetter interface that have multiple implementations.

The SimulatorCamera class provides a specific member function SimulatorCamera: :getFrameGetter ()
that returns the FrameGetter instance.

Depending on the current mode, FrameGetter can be dynamically casted to either:
* FrameBuilder
* FrameLoader
* FramePrefetcher
* FramePrefetcher
The class FrameBuilder can be parametrized with:
e setFrameDim () : set a new frame dimension (max. is 1024x1024)

e setPeaks (): set a list of GaussPeak positions (GaussPeak struct -> X, y, fwhm, max)

7.4. Windows and Linux 131

Lima Documentation, Release 1.9.8

* setPeakAngles (): seta list of GaussPeak angles
* setFillType (): set the image fill type Gauss or Diffraction (default is Gauss)
* setRotationAxis (): setthe rotation axis policy Static, RotationX or RotationY (default is RotationY)
* setRotationAngle (): set a peak rotation angle in deg (default is 0)
* setRotationSpeed (): set a peak rotation speed ixin deg/frame (default is 0)
* setGrowFactor (): seta growing factor (default is 1.0)
* setDiffractionPos (): set the source diplacement position x and y (default is center)
* setDiffractionSpeed/(): set the source diplacement speed sx and sy (default is 0,0)
The class FrameLoader can be parametrized with:

* setFilePattern(): set the file pattern used to load the frames than may include globing pattern, i.e.
input/test_x*.edf

The template <typename FrameGetterImpl> FramePrefetcher variants have an addition parameter:

* setNbPrefetchedFrames (): set the number of frames to prefetch in memory

Standard capabilities

This plugin has been implemented in respect of the standard capabilites of a camera plugin but with some limitations
according to some programmer’s choices. We only provide here extra information for a better understanding of the
capabilities for the simulator camera.

e HwDetInfo: The default (and max.) frame size if about 1024x1024-Bpp32, but one can only change the image
type by calling Det InfoCtrlObj: :setCurrImageType ().

* HwSync: Only IntTrig trigger mode is supported. For both exposure time and latency time min. is 10e-9 and
max. is 10e6.

Optional capabilities

In addition to the standard capabilities, some optional capabilities are implemented:
e HwShutter: The simulator only support ShutterAutoFrame and ShutterManual modes.
e HwRoi: There is no restriction for the ROIL

e HwBin: Bin Ix1 or 2x2 only.

Configuration

No hardware configuration of course!

132 Chapter 7. Supported Cameras

Lima Documentation, Release 1.9.8

How to use

The LimaCCDs tango server provides a complete interface to the simulator plugin so feel free to test.

For a quick test one can use the python binding, here is a short code example:

from Lima import Simulator
from Lima import Core
import time

def test_mode_generator (cam, nb_frames_prefetched = 0):

if nb_frames_prefetched:
cam.setMode (Simulator.Camera.MODE_GENERATOR_PREFETCH)
fb = cam.getFrameGetter ()
fb.setNbPrefetchedFrames (nb_frames_prefetched);

else:
cam.setMode (Simulator.Camera.MODE_GENERATOR)
fb = cam.getFrameGetter ()

Add a peak
pl = Simulator.GaussPeak (10, 10, 23, 1000) # peak at 10,10 fwhm=23 and max=1000
fb.setPeaks ([pl])

def test_mode_loader (cam, nb_frames_prefetched = 0):

if nb_frames_prefetched:
cam.setMode (Simulator.Camera.MODE_LOADER_PREFETCH)
fb = cam.getFrameGetter ()
test = fb.getNbPrefetchedFrames();

else:
cam.setMode (Simulator.Camera.MODE_LOADER)
fb = cam.getFrameGetter ()

Set file pattern
fb.setFilePattern (b'input\\test_ «.edf")

cam = Simulator.Camera ()

Select one of the mode to test
#test_mode_generator (cam)
#test_mode_generator (cam, 10)
#test_mode_ loader (cam)
test_mode_loader (cam, 100)

Get the hardware interface
hwint = Simulator.Interface (cam)

Get the control interface
control = Core.CtControl (hwint)

Get the acquisition control
acqg = control.acquisition ()

Set new file parameters and autosaving mode
saving=control.saving ()

pars=saving.getParameters ()
pars.directory='/tmp/"'

(continues on next page)

7.4. Windows and Linux 133

Lima Documentation, Release 1.9.8

(continued from previous page)

pars.prefix="testsimul '
pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

Now ask for 2 sec. exposure and 10 frames
acqg.setAcgExpoTime (2)
acqg.setAcgNbFrames (10)

control.prepareAcql()
control.startAcqg()

Wait for last image (#9) ready
lastimg = control.getStatus () .ImageCounters.LastImageReady
while lastimg !=9:

time.sleep(0.1)

lastimg = control.getStatus () .ImageCounters.LastImageReady

read the first image
im0 = control.ReadImage (0)

134 Chapter 7. Supported Cameras

CHAPTER
EIGHT

8.1 Acknowledgement

Many contributors contributed to new camera plugins, including:
* ESRF,
* SOLEIL,
* DESY,
o ALBA,
* FRMII,
* ANKA.

thank you for your support.

8.2 Under development

During the coming year, several new detector plugins should be released:

¢ Arinax Bi-zoom (Arinax Itd.)

+ QHYCCD model Q178-Cool (FRMI)

8.3 Foreseen

* Ximea for high resolution, 6kx6k pixel (ESRF)

FUTURE CAMERAS

135

https://www.esrf.eu/
https://www.synchrotron-soleil.fr/
http://www.desy.de/
https://www.cells.es/en
https://www.frm2.tum.de
https://www.anka.kit.edu/

Lima Documentation, Release 1.9.8

136 Chapter 8. Future Cameras

CHAPTER
NINE

PYTHON TANGO SERVER

This is the python Tango devices server by the ESRF team.

This server provides a main device for the standard camera control, a camera specific device for the camera configu-
ration and a set of “plugin” devices for extra operations or just to provide some specific API for clients.

Thanks to the Lima framework, the control can be achieved through a common server and a set of software operations
(Mask,Flatfield,Background,RoiCounter,PeakFinder. ..) on image as well. The configuration of the detector is done
by the specific detector device. At ESRF we decided to develop the Tango devices only in python language which
implies that all the detector C++ interfaces have been wrapped in python.

9.1 Main device: LimaCCDs

LimaCCDs is the generic device and it provides a unique interface to control any supported cameras. One can find
below the commands, the attributes and the properties.

To run a LimaCCDs server you will need at least to configure the LimaCameraType property. This property is used
by the LimaCCDs server to create the proper camera device. Pleas refer a specific camera (e.g Basler) device chapter
for further information.

137

Lima Documentation, Release 1.9.8

9.1.1 Property

Property Manda- Default Description

name tory value

AccThreshold- | No “r Plugin file name which manages threshold, see acc_saturated_* at-
CallbackMod- tributes and the * AccSaturated* commands to activate and use this fea-
ule ture

Buffer- No 70 The maximum among of memory in percent of the available RAM that
MaxMemory Lima is using to allocate frame buffer.

Configura- No ~/lima_<serv4{ The default configuration file path

tionFilePath name>.cfg

Configura- No “default” Your default configuration name

tionDefault-

Name

Intrument- No «“r The instrument name, e.g ESRF-ID02 (*)

Name

LimaCamer- Yes N/A The camera type: e.g. Maxipix

aType

MaxVideoFPS | No 30 Maximum value for frame-per-second

NbProcess- No 1 The max number of thread for processing. Can be used to improve the
ingThread performance when more than 1 task (plugin device) is activated
TangoEvent No False Activate Tango Event for counters and new images

UserDetector- No «“ A user detector identifier, e.g frelon-saxs, (*)

Name

(*) Properties only used to set meta-data in HDFS5 saving format.

138

Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

9.1. Main device: LimaCCDs 139

Lima Documentation, Release 1.9.8

9.1.2 Commands

Command name Arg. in Arg. out Description
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as
a string
getAttrStringValueList DevString: Attribute | DevVarStringArray: Return the authorized
name String value list string value list for a
given attribute name
prepareAcq DevVoid DevVoid Prepare the camera for a
new acquisition, has to be
called each time a param-
eter is set.
startAcq DevVoid DevVoid Start the acquisition
stopAcq DevVoid DevVoid Stop the acquisition after
current frame is acquired,
and wait for all tasks to
finish
abortAcq DevVoid DevVoid Abort the acquisition, the
current frame is lost
setimageHeader DevVarSFrmgArray. Ar- | DevVoid Set the image header:
ray of string header
* [0]="Im-
ageld0 delim-
iter image-
HeaderO,
«[1] = Im-
ageldl delim-
iter image-
Headerl..
resetCommonHeader DevVoid DevVoid Reset the common header
resetFrameHeaders DevVoid DevVoid Reset the frame headers
getlmage DevLong: Image | DevVarCharArray: Image | Return the image data in
number(0-N) data raw format (char array)
getBaselmage DevLong: Image | DevVarCharArray: Image | Return the base image
number(0-N) data data in raw format (char
array). Base image is the
raw image before process-
ing
readlmage DevLong: Image | DevEncoded: Encoded | Return the image in
number(0-N) image encoded format of type
“DATA_ARRAY”
(see DevEncoded
DATA_ARRAY)
readlmageSeq DevLongArray: Image | DevEncoded: Encoded | Return a stack of images
number(0-N) list image(S) in encoded format of
type “DATA_ARRAY”
(see DevEncoded
DATA_ARRAY)
writeImage DevLong: Image | DevVoid Save manually an image

number(0-N)

readAccSaturatedlmage-
Counter

DevLong: Image number

DevVarUShortArray: Im-
age counter

The image counter

14dAccSaturatedSum-
Counter

DevLong: from image id

DevVarLongArraGhapder ¢

D.niRybhonf TANGO:sexster
images,sum counter of
raw image #0 of image
#0,sum counter of raw

Lima Documentation, Release 1.9.8

9.1.3 Attributes

You will here a long list of attributes, this reflects the richness of the LIMA library. We organized them in modules
which correspond to specific functions. A function module is identified by an attribute name prefix (excepted for
informationnal attributes), for instance the Acquisition module attributes are always named acq_<attr-name>. The
available modules are :

* General Information

* Status (prefix last_ and ready_)

* Acquisition (prefix acq_ for most of them sorry)
e Accumulation (prefix acc_)

* Saving (prefix saving_)

* Image (prefix image_)

* Shutter (prefix shutter_)

* Debug (prefix debug_)

* Video (prefix video_)

* Shared Memory (prefix shared_memory_)
 Configuration (prefix config_)

* Buffer (prefix buffer_)

¢ Plugin (prefix plugin_)

Many attributes are of type DevString and they have a fixed list of possible values. you can get the list by calling the
special command getAttrStringValueList. Because a camera cannot support some attribute values , the command
getAttrString ValueList will give you the the value list for the camera. For instance the attribute video_mode supports
up to 14 different video formats, but a camera can only supports few of them.

Attribute name RW Type Description
GENERAL INFORMA-
TION
lima_version ro DevString The lima core library ver-
sion number
lima_type ro DevString LImA camera type: Max-
ipix,Pilatus,Frelon,Pco,
Basler ...
camera_type 1o DevString Like lima_type but in
upper-case !!
camera_pixelsize ro DevDouble[x,y] The camera pixel size in x
and y dimension
camera_model ro DevString Camera model return by
the detector layer:.e.g.
5x1- TPX1
STATUS
last_base_image_ready o DevLong The last base (before treat-
ment) ready

continues on next page

9.1. Main device: LimaCCDs 141

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page

Attribute name RW Type Description
last_image_ready ro DevLong The last acquired image
number, ready for reading
last_image_saved ro DevLong The last saved image
number
last_image_acquired ro DevLong The last acquired image
number
last_counter_ready ro DevLong Tell which image counter
is last ready
ready_for_next_image ro DevBoolean True after a camera read-

out, otherwise false. Can
be used for fast synchro-
nisation with trigger mode
(internal or external).

ready_for_next_acq o DevBoolean True after end of acquisi-
tion, otherwise false.

user_detector_name 'w DevString User detector name

instrument_name 'w DevString Intrument/beamline name

ACQUISITION

acq_status ro DevString Acquisition status: Ready,
Running, Fault or Config-
uration

acq_status_fault_error o DevString In case of Fault state, re-

turn the error message

acq_mode w DevString
Acquisition mode:

* Single, de-
fault mode
one frame per
image

¢ Concatena-
tion, frames

are con-
catenated in
image

¢ Accumula-

tion, powerful
mode to avoid
saturation

of the pixel,
the exposure
is shared
by multiple
frames, see
acc_ attributes
for more

continues on next page

142 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page

Attribute name

RW

Type

Description

acq_nb_frames

™

DevLong

Number of frames to be
acquired, Default is 1
frame

continues on next page

9.1. Main device: LimaCCDs

143

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page

Attribute name RW Type Description
acq_trigger_mode w DevString
Trigger mode:
* Inter-

nal_trigger,

the software
trigger, start
the acquisi-
tion imme-
diately after
an acqStart()
call, all the
acq_nb_frames
are acquired
in an se-
quence.

* Exter-
nal_trigger,
wait for an ex-
ternal trigger
signal to start
the an acqui-
sition for the
acq_nb_frames
number of
frames.

¢ Exter-
nal_trigger_multi,
as the pre-
vious mode
except that
each frames
need a new
trigger input
(e.g. for
4 frames 4
pulses are
waiting for)

¢ Inter-
nal_trigger_multi,
as for inter-
nal_trigger
except that for
each frame
the startAcq()
has to called
once.

¢ Exter-
nal_gate,
wait for a
gate signal
for each
frame, the
gate period is
the exposure

144 Chapter 9. Python TANGO server
¢ Exter-
nal_start_stop

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page

Attribute name

RW

Type

Description

latency_time

™

DevDouble

Latency time in second
between two frame acqui-
sitions, can not be zero,
the minimum time corre-
sponds to the readout time
of the detector.

valid_ranges

1o

DevDouble[4]

min exposure, max expo-
sure, min latency, max la-
tency

concat_nb_frames

™w

DevLong

The nb of frames to con-
catenate in one image

acq_expo_time

DevDouble

The exposure time of the
image, Default is 1 second

ACCUMULATION

acc_expotime

10

DevDouble

The effective accumula-
tion total exposure time.

acc_nb_frames

o

DevLong

The calculated accumula-
tion number of frames per
image.

acc_max_expotime

DevDouble

The maximum exposure
time per frame for accu-
mulation

acc_time_mode

™

DevString

Accumulation time mode:

Live,acq_expo_|

acc_live_time
Real,acq_expo |
acc_dead_time

+
acc_live_time

acc_dead_time

10

DevDouble

Total accumulation dead
time

acc_live_time

1o

DevDouble

Total accumulation live
time which corresponds to
the detector total counting
time.

acc_offset_before

™w

DevLong

Set a offset value to be
added to each pixel value

acc_saturated_active

™

DevBoolean

To activate the saturation
counters (i.e. readAccSat-
urated commands)

continues on next page

9.1. Main device: LimaCCDs

145

time

time

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page
Attribute name RW Type Description
acc_saturated_cblevel 'w DevLong Set at which level of total
saturated pixels the call-
back plugin (if set with
the AccThresholdCall-
backModule property)
will be called
acc_saturated_threshold 'w DevLong The threshold for count-
ing saturated pixels
acc_threshold_before ™w DevLong Set a threshold value to
be substract to each pixel
value

SAVING

saving_mode 'w DevString
Saving mode:

e Manual, no
automatic
saving, a com-
mand will be
implemented
in a next
release to be
able to save
an acquired
image.

¢ Auto_Frame,
Frames are
automatically
saved accord-
ing the saving
parameters
(see below).

¢ Auto_header,
Frames are
only saved
when the
setlmage-
Header() is
called in order
to set header
information
with image
data.

saving_directory w DevString The directory where to
save the image files
saving_prefix w DevString The image file prefix
saving_suffix w DevString The image file suffix
continues on next page

146 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page
Attribute name RW Type Description
saving_next_number ™w DevLong The image next num-
ber The full image
file name is: /sav-
ing_directory/saving_prefixtsprintf(“%04d”,s

saving_format w DevString
The data format for saving:

¢ Raw, save in
binary format

o Edf, save in
ESRF Data
Format

* edfgz (or
edf.gz), EDF
with gz
compression

* Tiff, The
famous TIFF
format

¢ Cbf, save in
CBF format
(a compressed
format for
crystallogra-

phy)

saving_overwrite_policy ™w DevString
In case of existing files an pverwite policy is

¢ Abort, if the
file exists
the saving is
aborted

¢ Overwrite, if
the file exists
it is overwrit-
ten

e Append, if
the file exists
the image is
append to the
file

saving_frame_per_file 'w DevLong Number of frames saved
in each file
saving_common_header ™w DevString(] Common header with
multiple entries
continues on next page

9.1. Main device: LimaCCDs 147

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page

Attribute name

RW

Type

Description

saving_header_delimiter

™

DevString[]

The header delimiters, [0]
= key header delimiter,
[1] = entry header delim-
iter, [2] = image number
header delimiter. Default
: [0l =*=", [1] = “n”, [2]

T
_

saving_max_writing_task

™

DevShort

Set the max. tasks for sav-
ing file, default is 1

saving_statistics

10

DevDouble[]

Return stats: saving
speed, compression ratio,
compression speed and
incoming speed (speed in
byte/s)

saving_statistics_history

™

DevLong

Set size of history for stats
calculation, default is 16
frames

IMAGE

image_type

(o]

DevString

Return the current image

* Bpp8, Bpp3S,
Bppl10,
Bpp10S,
Bppl2,
Bpp12S,
Bppl4,

* Bppl4S,
Bppl16,
Bppl6S,
Bpp32,
Bpp32S ,
Bpp32F.

image_width

10

DevLong

Width size of the detector
in pixel

image_height

10

DevLong

Height size of the detector
in pixel

image_sizes

1o

DevULong[4]

Signed(0-unsigned, 1-
signed), depth(nb bytes),
width and height

image_max_dim

10

DevULong[2]

Maximum image dimen-
sion, width and height in
pixel

data type, bit per

continues on next page

148

Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page

Attribute name

RW

Type

Description

image_roi

™

DevLong[4]

Region Of Interest on im-
age, [0] = Begin X, [1] =
End X, [2] Begin Y, [3]
= End Y, default ROI is
[0,0,0,0] (no ROI)

image_bin

™

DevLong[2]

Binning on image, [0] =
Binning factor on X, [1] =
Binning factor on Y. De-
fault binning is 1 x 1

image_{flip

™w

DevBoolean[2]

Flip on the image, [0] =
flip over X axis, [1] flip
over Y axis. Default flip
is False x False

image_rotation

™

DevString

Rotate the image: “07,
G490”, ‘418095 Or 4‘2707’

SHUTTER

shutter_ctrl_is_available

10

DevBoolean

Return true if the camera
has a shutter control

shutter_mode

™w

DevString

Synchronization for shuttg

¢ Manual

¢ Auto_frame,
the output
signal is acti-
vated for each
individual
frame of a
sequence

Auto_sequence
the output
signal is acti-
vated during
the whole
sequence

shutter_open_time

™

DevDouble

Delay (sec.) between the
output shutter trigger and
the beginning of the ac-
quisition, if not null the
shutter signal is set on
before the acquisition is

tr, modes are ava

]

started.

continues on next page

9.1. Main device: LimaCCDs

149

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page

Attribute name RW Type Description
shutter_close_time 'w DevDouble Delay (sec.) between the
shutter trigger and the end
of the acquisition, if not
null the shutter signal is
set on before the end of
the acquisition.
shutter_manual_state w DevString To open/close manually
the shutter (if Manual
mode is supported, see
shutter_mode)

DEBUG

debug_module_possible ro DevString[] Return the list of possible
debug modules

debug_modules ™w DevString[]
Set the debug module level of LImA:

¢ “None”

e “Common”

e “Hardware”

¢ “HardwareSe-
rial”

¢ “Control”

* “Espia”

» “EspiaSerial”

e “Focla”

e “Camera”

e “Camera-
Com”

e “Test”

* “Application”

debug_types_possible ro DevString[] Return the list of the pos-
sible debug types

debug_types w DevString[]
Set the debug type level of LImA:

e “Fatal”

e “Error”

e “Warning”
e “Trace”

¢ “Funct”

e “Param”
e “Return”
e “Always”

continues on next page

150 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page

Attribute name RW Type Description
VIDEO

video_active ™w DevBoolean Start the video mode (or
not)

video_live w DevBoolean Start the video streaming
(or not)

video_exposure w DevDouble The video exposure time
(can be different to the
acq_expo_time)

video_gain w DevDouble The video gain (if sup-
ported by the hardware)

continues on next page

9.1. Main device: LimaCCDs

151

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page
Attribute name RW Type Description
video_mode 'w DevString

The video mode is the vid¢o format suppor!

* Y8, grey im-
age 8bits

* Y16, grey im-
age 16bits

* Y32, grey im-
age 32bits

* RGB555,
color image
RGB 555
encoding

* RGB564,
color image
RGB 555
encoding

* RGB24,
color image
RGB 24bits
encoding

* RGB32,
color image
RGB 32bits
encoding

* BGR24,
color image
BGR 24bits
encoding

* BGR32,
color image
BGR 32bits
encoding

BAYER_RGS,
color image
BAYER

RG 8bits
encoding

BAYER_RG16,
color image
BAYER
RG 16bits
encoding

e 1420, color
image 1420
(or YUV420)
planar encod-
ing

* YUV411,
color image
YUV411 pla-

nar Pn(‘nding

152 Chapter 9. Python TANGO server
YUV422PACKI
color image
YUV422 pla-

ey

D9

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page
Attribute name RW Type Description
video_roi w DevLong[4] A ROI on the video image
(independent of the im-
age_roi attribute)
video_bin w DevULong|[2] A Binning on the video
image (independt of the
image_bin attribute)
video_last_image 'w DevEncoded The last video 1im-
age, in DevEncoded
“VIDEO_IMAGE”
format, and wusing the
video_mode set, see
the DevEncoded def-
inition DevEncoded
VIDEO_IMAGE
video_source ™™ DevString The source for video im-
age, BASE_IMAGE (raw
image) or LAST_IMAGE
(after soft operation) Only
valid with monochrome or
scientific cameras

video_last_image_counter | rw DevLong64 The image counter
SHARED MEMORY
shared_memory_names 'w DevString[2] Firstname and surname

of the SPS typed shared
memory (default is Li-
maCCDs,<camera_type>)

shared_memory_active 'w Activate or not the shared
memory. The shared
memory is for image dis-
play
CONFIG
config_available_module | ro DevString[] List of possible config
modules,
config_available_name ro DevString[] List of existing config
names
BUFFER
buffer_max_memory ™w DevShort The maximum among of

memory in percent of the
available RAM that Lima
is using to allocate frame
buffer.

PLUGIN

continues on next page

9.1. Main device: LimaCCDs 153

Lima Documentation, Release 1.9.8

Table 1 — continued from previous page

Attribute name

RW Type

Description

plugin_type_list

ro DevString[]

List of the available plu-
gin type, to get one device
name use instead the
getPluginDeviceName-
FromType command

plugin_list

ro DevString[]

List of the available plugin
as couple of type, device
name

DevEncoded DATA_ARRAY

The DATA_ARRAY DevEncoded has been invented for special Tango client like SPEC. It is used by the readImage
command. It can only embed raw data (no video data). The supported image format can be retrieve with the im-
age_type attribute (Bpp8,Bpp8S, ..., Bppl6,..) This encoded format is very generic and it supports many different
type of data from scalar to image stack (see DataArrayCategory enumerate C-type). The readlmage command only

supports Image data array category.

The DATA_ARRAY format is composed of a fixed header followed by the raw data. The header is a C-like structure,

with little-endian byte order and no alignment:

The DATA ARRAY definition

struct {
unsigned int
unsigned short
— 2014)
unsigned short

DataArrayCategory

magic= 0x44544159; // magic key

—DataArrayCategory enumerate

DataArrayType
unsigned short
unsigned short
—for image
unsigned short
—height]
unsigned int
—g [1,height]
unsigned int
} DATA_ARRAY STRUCT;

version; // version, only 2 supported (since v1.9.5 -
header_size; // size of the header

category; // data array category, see_

data_type; // data type, see DataArrayType enumerate
endianness; // 0-little—-endian, l-big-endian

nb_dim; // number of dimension (0 to 5 max)e.g 2,
dim([6]; // size for each dimension, e.g [width,
dim_step[6]; // step size in pixel for each dimension, e.
padding[2]; // 8 bytes of padding (for alignment)

enum DataArrayCategory {

ScalarStack = 0;
Spectrum;
Image;
SpectrumStack;
ImageStack;

bi

enum DataArrayType(

DARRAY_UINT8 = O;

DARRAY UINT16;
DARRAY_UINT32;
DARRAY_UINT64;
DARRAY INTS;
DARRAY_INT16;

(continues on next page)

154

Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

(continued from previous page)

DARRAY_INT32;

DARRAY_INT64;

DARRAY_FLOAT32;

DARRAY_FLOAT64;
}i

DevEncoded VIDEO IMAGE

The VIDEO_IMAGE DevEncoded has been implemented for the video_last_image attribute to return the last image.
It can embed any of the supported video format depending of the video_mode attribute value.

The VIDEO_IMAGE format is composed of a fixed header followed by the data. The header is a C-like structure,
with big-endian byte order and no alignment:

struct {
unsigned int magic_number = 0x5644454f;
unsigned short version; // only version 1 is supported
unsigned short image_mode; // Y8,Y16,....
long long frame_number; // the frame number (counter)
int width; // the frame width in pixel (horizontal size)
int height // the frame height in pixel (vertical size)
unsigned short endianness; // O0-little-endian, l-big-endian
unsigned short header_size; // this header size in byte
unsigned short padding[2]; // 4 bytes of padding (for alignment)

} VIDEO_IMAGE_STRUCT;

9.2 Camera devices

Each camera has a configuration device with its own property/attribute/command lists. The camera configuration
device is supposed to give you access to the “private” parameters of the detector that LIMA does not need but you may
want to set. For instance some detectors provides a temperature control with set-points and/or start/stop commands
for a auxillary cooling system.

For more details about the camera device interface, please have a look on the following sections:

9.2.1 Andor Tango device

This is the reference documentation of the Andor Tango device.

you can also find some useful information about prerequisite/installation/configuration/compilation in the Andor cam-
era plugin section.

9.2. Camera devices 155

Lima Documentation, Release 1.9.8

Properties
Property Manda- Default Description
name tory value
adc_speed No max. The adc/Horiz. speed pair
base- No Off Clamping for baseline threshold, ON or OFF
line_clamp
cam- No N/A The camera number, default is 0
era_number
cooler No Off Start/stop the cooling system of the camera mode
config_path No N/A The configuration path, for linux default is /ust/local/etc/andor
fast_ext_trigger| No Off Fast external trigger mode, see Andor documentation for usage
fan_mode No N/A FAN mode, FAN_ON_FULL/FAN_ON_LOW/FAN_OFF
high_capacity | No High_capacity Camera can run in two modes, HIGH_CAPACITY or
HIGH_SENSITIVITY
p_gain No max. The preamplifier gain [X1-Xn] (see detector spec.)
shutter_level No High The shutter output level mode
tempera- No N/A The temperature setpoint in Celsius
ture_sp
vs_speed No fasten The vertical shift speed (see detector spec.)
156 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Attributes

Attribute name

RW

Type

Description

adc_speed

™w

DevString

The ADC and Horizon-
tal shift speed, in ADC-
channel/Freq.Mhz, check
the documentatio for more
help (*)

baseline_clamp

™

DevString

The baseline clamping for|threshold: (*%*)

* ON
* OFF

cooler

™w

DevString

Start/stop the cooling system of the camera

* ON, the
cooler is
started

¢ OFF, the
cooler is
stopped

cooling_status

o

DevString

The status of the cooling
system, tell if the setpoint
temperature is reached

fan_mode

™

DevString

The FAN mode for extra-g¢ooling: (**)
¢ FAN_OFF

FAN_ON_FULL

FAN_ON_LOW

fast_ext_trigger

™

DevString

Fast external trigger mode¢, see Andor docu

* ON, fast
mode, the
camera will
not wait until
the a keep
clean cycle
has been com-
pleted before
accepting the
next trigger

* OFF, slow
mode

high_capacity

™

DevString

Off/On the High Capacity|mode: (*%*)

HIGH_CAPACITY

9.2. Camera devices

. 157
HIGH_SENSITIVITY

p_gain

™w

DevString

The preamplifier gain

Lima Documentation, Release 1.9.8

(*) Use the command getAttrString ValueList to get the list of the supported value for these attributes.

(**) These attributes can not be supported by some camera models and the return value will be set to UNSUP-
PORTED.

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2.2 Basler Tango device

This is the reference documentation of the Basler Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Basler camera plugin section.

Properties
Property name Manda- Default value Description
tory
camera_id No uname://<server instance | The camera ID (see details below)
name>
packet_size No 8000 the packet size
inter_packet_delay No 0 The inter packet delay
frame_transmission_delay | No 0 The frame transmission delay

camera_id property identifies the camera in the network. Several types of ID might be given:
 [P/hostname (examples: ip.//192.168.5.2, ip://white_beam_viewerl.esrf.fr)
* Basler serial number (example: sn://12345678)
* Basler user name (example: uname.//white_beam_viewerl)

If no camera_id is given, it uses the server instance name as the camera user name (example, if your server is called
LimaCCDs/white_beam_viewerl, the default value for camera_id will be uname://white_beam_viewerl).

To maintain backward compatibility, the old cam_ip_address is still supported but is considered deprecated and might
disappear in the future.

Both inter_packet_delay and frame_tranmission_delay properties can be used to tune the GiGE performance, for more
information on how to configure a GiGE Basler camera please refer to the Basler documentation.

158 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Attributes
Attribute name RW | Type Description
statistics_total_buffer_count 'w DevLong Total number of requested frames
statistics_failed_buffer_count | rw DevLong Total number of failed frames
test_image_selector W DevString Select a test image: image_off/image_1/.../image_7 (*)
outputl_line_source w DevString Select a source for I/O outputl line (*)
user_output_linl W DevBoolean | Switch on/off UserOuput on outputl line (¥)

(*) Use the command getAttrString ValueList to get the list of the supported value for these attributes.

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2.3 Dexela Tango device

This is the reference documentation of the Dexela Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Dexela camera plugin section.

Properties
Property name | Mandatory | Default value Description
database_path Yes DexelaConfig.cfg | The database path file, e.g C:DexelaConfig.cfg
sensor_format Yes sensor2923 The detector model
Attributes
Attribute name | RW | Type Description
full_well_mode | ro DevString | The well-mode, can be set to HIGH or LOW

9.2. Camera devices

159

Lima Documentation, Release 1.9.8

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2.4 Frelon Tango device

This is the reference documentation of the Frelon Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Frelon camera plugin section.

Properties
Property name | Mandatory | Default value | Description
espia_dev_nb No 0 The acquisition Espia board number
160 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Attributes
Attribute name RW Type Description
espia_dev_nb 1o DevString The Espia board number.
i d DevStri
tmage_ode v evsting The acquisition image mode:
* Frame trans-
fert
* Full frame
input_ch. 1 DevStri
Hpti_channe v evsting The Inputs ADC channels;
1
e 2
*3
4
e 1-2
* 34
13
24
e 1-2-34
2 ti DevStri
esv_correction ™ evstng Active/Desactive the corrstion for e2v came
* On
* Off
; d DevStri
roi_mode ™w evString The roi mode:
* None
* Slow
* Fast
* Kinetic
roi_bin_offset 'w DevLong The roi offset in line
spb2_config w DevString The internal config for
pixel rate, precision or
speed. Depending on
your camera model, the
pixel rates are factory de-
fined
seq_status ro DevLong

Please refer to the Frelon User’s Guide for more information about the above specfic configuration parameters.

9.2. Camera devices 161

Lima Documentation, Release 1.9.8

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name
execSerial- DevString com- | DevString command re- | Send a command through the serial line
Command mand sult
resetLink DevVoid DevVoid reset the espia link

9.2.5 ImXPAD Tango device

This is the reference documentation of the InXPAD Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the ImXPAD camera plugin section.

Properties

Property name Manda- Default value | Description

tory

cam- Yes N/A IP address

era_ip_address

port No 3456 socket port number

model No XPAD_S70 detector model

usb_device_id No N/A reserved, do not use

config_path Yes N/A The configuration directory path (see loadConfig command)
Attributes

This camera device has no attribute.

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name
loadConfig DevString DevVoid the config file prefix, the property con-
fig_path is mandatory
162 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

9.2.6 Basler Tango device

This is the reference documentation of the Basler Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Marccd camera plugin section.

Properties
Property name | Mandatory | Default value | Description
camera_ip Yes n/a The camera hostname or ip address
port_number Yes n/a Socket port number
image_path Yes n/a The inter packet delay
Attributes
Attribute name RW | Type Description
source_beam_x 'w DevFloat
source_beam_y 'w DevFloat
source_distance 'w DevFloat
source_wavelength 'w DevFloat
header_beam_x ro DevFloat
header_beam_y ro DevFloat
header_distance ro DevFloat
header_pixelsize_x o DevFloat
header_pixelsize_y 1o DevFloat
heaer_integration_time o DevFloat
header_exposure_time 1o DevFloat
header_readout_time 0 DevFloat
header_wavelength 1o DevFloat
header_acquire_timestamp | ro DevFloat
header_header_timestamp | ro DevFloat
header_save_timestamp o DevFloat
header_mean_bias ro DevFloat
header_mean o DevFloat
header _rms ro DevFloat
header_temperature ro DevFloat[9]
header_pressure IO DevFloat[9]
Commands
Command name | Arg.in | Arg. out | Description
Init DevVoid | DevVoid Do not use
State DevVoid | DevLong | Return the device state
Status DevVoid | DevString | Return the device state as a string

9.2. Camera devices

163

Lima Documentation, Release 1.9.8

9.2.7 Maxipix Tango device

This is the reference documentation of the Maxipix Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Maxipix camera plugin section.

Properties

Property name Mandatory Default value Description

config_name Yes N/A The configuration name

config_path Yes N/A The configuration direc-
tory path where the files
are available

espia_dev_nb No 0 The acquisition Espia
board number

reconstruction_active No True Activate the reconstruc-
tion or not

fill_mode No Raw the chip-gap filling mode,

Dispatch or Mean.

gate_level No High_Rise The Input gate level,
High_rise or Low_Fall

gate_mode No Inactive The gate mode, Inactive
or Active

ready_level No High_Rise The output ready level,
High_rise or Low_Fall

ready_mode No Exposure The output Ready mode,
Exposure or Expo-
sure_Readout

shutter_level No High_Rise The output Shutter level,
High_rise or Low_Fall

trigger_level No High_Rise The output Trigger level,

High_rise or Low_Fall

164

Chapter 9. Python TANGO server

Raw, Zero,

Lima Documentation, Release 1.9.8

9.2. Camera devices 165

Lima Documentation, Release 1.9.8

Attributes
Attribute name RW Type Description
config_name w DevString the configuration name. If
changed the detector is re-
configured and reset.
config_path w DevString the configuration direc-
tory path where the files
are available
energy_calibration w Spectrum DevDouble The energy calibration,
[0] = threshold setpoint
, [1] threshold step-size
(keV)
energy_threshold w DevDouble The threshold in energy
(keV)
threshold ™w DevDouble The detector threshold
threshold_noise ™w Spectrum DevDouble The threshold noise of
each chip, [0] =chipO0 thl,
[0] = chipl thl,
espia_dev_nb w DevString The Espia board number.
fill_mode w DevString The chip-gap filling mode
¢ Raw, the bor-
der pixel val-
ues are copied
e Zero, border
and gap pixel
are set to zero
* Dispatch, the
border pixel
values are
interpolated
over the full
gap
¢ Mean, the
gap pixels are
filled with the
border pixels
average value.
gate_level ™w DevString The Input gate level:
¢ High_rise
¢ Low_Fall
gate_mode ™w DevString The gate mode:
* Inactive
e Active
ready_mode ™w DevString The output Ready mode:
e Exposure
* Expo-
166 Chapter 9. Python fRFfGBegg?\%r
shutter_level 'w DevString

The output Shutter level

Lima Documentation, Release 1.9.8

Warning: we recommend to not change the DAC register values (dac_name and dac_value attributes) excepted if you
well know what you are doing, if you have some troubles with the detector please contact the ESRF Detector Unit

first.
Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2.8 Merlin Tango device

This is the reference documentation of the Merlin Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Merlin camera plugin section.

Properties
Property name | Mandatory | Default value | Description
HostName Yes none The detector IP address
CmdPort No 6431 The tcp command port
DataPort No 6432 The tcp data port
ImageWidth No 512 The number of detector pixels
ImageHeight No 512 The number of detector rasters
Chips No 4 The number of detector medipix3 chips
Simulate No 0 Command simulation mode
Attributes
Attribute name RW | Type Description
acqRunning ro DevBoolean | Is acquisition active
chargeSumming w DevString Charge Summming mode (ON/OFF)
colourMode rw | DevString Colour mode (MONOCHROME/COLOUR)
continuousRW ™w DevString Continuous Collection (ON/OFF)
counter ™w DevString Counter (COUNTERO/COUNTER1/BOTH)
depth rw | DevString Counter depth (BPP1/BPP6/BPP12/BPP24)
fileDirectory w DevString Directory name if saving on Merlin PC
fileEnable w DevString Enable file saving to Merlin PC (ON/OFF)
fileName ™w DevString Filename if saving on Merlin PC
gain ™wW DevString Gain Settings (SHGM/HGM/LGM/SLGM)
operatingEnergy rw DevFloat Energy keV (0 < e <999.99)
software Version 1o DevFloat Software version number

9.2. Camera devices

167

Lima Documentation, Release 1.9.8

Table 2 — continued from previou

Attribute name RW | Type Description
temperature ro DevFloat Temperature degrees C
thresholdO w DevFloat Threshold 0 keV (0 < th < 999.99)
threshold1 ™w DevFloat Threshold 1 keV (0 < th < 999.99)
threshold2 ™w DevFloat Threshold 2 keV (0 < th < 999.99)
threshold3 w DevFloat Threshold 3 keV (0 < th < 999.99)
threshold4 ™w DevFloat Threshold 4 keV (0 < th < 999.99)
threshold5 w DevFloat Threshold 5 keV (0 < th < 999.99)
threshold6 ™w DevFloat Threshold 6 keV (0 < th < 999.99)
threshold7 w DevFloat Threshold 7 keV (0 < th < 999.99)
triggerStartType ™wW DevString Trigger start mode (INTERNAL/RISING_EDGE_TTL/FALLING_EDGE_TTL/}
triggerStopType ™w DevString Trigger stop mode (INTERNAL/RISING_EDGE_TTL/FALLING_EDGE_TTL/F
triggerOutTTL rw DevString TTL Trigger stop mode (TTL/LVDS/TTL_DELAYED/LVDS_DELAYED/FOLLC
triggerOutLVDS w DevString LVDS Trigger stop mode (TTL/LVDS/TTL_DELAYED/LVDS_DELAYED/FOLL
triggerOutTTLInvert rw DevString TTL Trigger invert mode (NORMAL/INVERTED)
triggerOutLVDSInvert | rw DevString LVDS Trigger invert mode (NORMAL/INVERTED)
triggerOutTTLDelay rw DevLong64 | TTL Trigger delay ns (0 < del < 68719476720)
triggerOutLVDSDelay | rw DevLong64 | LVDS Trigger delay ns (0 < del < 68719476720)
triggerUseDelay rw DevString Use Trigger delay (ON/OFF)
thScanNum ™w DevLong Threshold number to scan (0 <n < 7)
thStart ™w DevFloat Threshold scan start energy keV (0 < e < 999.99)
thStep ™w DevFloat Threshold scan step energy keV (0 < e < 999.99)
thStop w DevFloat Threshold scan stop energy keV (0 < e <999.99)
Commands
Command name | Arg. in | Arg. out | Description
Init DevVoid | DevVoid Do not use
State DevVoid | DevLong | Return the device state
Status DevVoid | DevString | Return the device state as a string
SoftTrigger DevVoid | DevVoid | Perform soft trigger
Abort DevVoid | DevVoid Abort
THScan DevVoid | DevVoid | Perform threshold scan
ResetHW DevVoid | DevVoid Reset
168 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

9.2.9 Eiger Tango device

This is the reference documentation of the Dectris Eiger Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Dectris Eiger camera plugin section.

Properties
Property name Manda- Default Description
tory value
detec- Yes N/A The ip address or the hostname of the detector computer in-
tor_ip_address terface
http_port No 80 The http port number for control API
stream_port No 9999 The port number for the data stream API

9.2. Camera devices

169

Lima Documentation, Release 1.9.8

Attributes
Attribute name RW Type Description
auto_summation w DevString If enable image depth is
bpp32 and, if not image
depth is bpp16 (¥)
cam_status o DevString The internal camera status
compression_type W DevString For data stream, supporte
* NONE
e LZ4
* BSLZ4
countrate_correction w DevString Enable or disable the
countrate correction (*)
efficency_correction ™w DevString Enable the efficienty cor-
rection
flatfield_correction 'w DevString Enable or disable the in-
ternal (vs. lima) flatfield
correction (¥)
humidity ro DevFloat Return the humidity per-
centage
pixel_mask w DevString Enable or disable the pixel
mask correction (*)
photon_energy w DevFloat The photon energy,it
should be set to the
incoming beam energy.
Actually it’s an helper
which set the threshold
plugin_status ro DevString The camera plugin status
serie_id ro DevLong The current acquisition
serie identifier
stream_last_info o DevString Information on data
stream, encod-
ing, frame_dim and
packed_size
stream_ stats ro DevDouble ave_size, ave_time,
ave_speed
threshold_energy ™™ DevFloat The threshold energy, it
will set the camera de-
tection threshold. This
should be set between 50
to 60 % of the incoming
beam energy.
temperature ro DevFloat The sensor temperature
virtual_pixel_correction ™w DevString Enable or disable the

virtual-pixel ~ correction

*)

(*) These attributes can take as value ON or OFF. Please refer to the Dectris documention for more information
regarding the online corrections.

170

Chapter 9. Python TANGO server

d compression ar

Lima Documentation, Release 1.9.8

Commands

Command name Arg. in Arg. out Description
deleteMemoryFiles DevVoid DevVoid To remove the temporary
mem. files
initialize DevVoid DevVoid To initialize the detector
latchStreamStatistics DevBoolean DevVarDoubleArray: If True, reset the statistics
* ave_size,
e ave_time,
* ave_speed
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as
a string
getAttrString ValueList DevString: Attribute | DevVarStringArray: Return the authorized
name String value list string value list for a
given attribute name

9.2.10 Mythen3 Tango device

This is the reference documentation of the Mythen3 Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Xspress3 camera plugin section.

Properties
Property name | Mandatory | Default value | Description
HostName Yes The Mythen detector socket server IP address
TcpPort No 1031 The tcp communication port.
Simulate No 0 Command simulation mode.
Attributes
Attribute name RW | Type Description
acqRunning ro DevBoolean Is acquisition active
assemblyDate 1o DevString Assembly date of the Mythen system
badChannellnterpolation | rw DevString Enable/Disable Bad Channel Interpolation Mode (ON/OFF)
badChannels ro DevLong[1280*Nb] | Display state of each channel for each active module [Nb = nbModules]
commandID ro DevLong Command identifier (increases by 1)
continuousTrigger W DevString Enable/Disable continuous trigger mode (ON/OFF)
cutoff o DevLong Count value before flatfield correction
delayBeforeFrame W DevLong64 Time delay between trigger & start (100ns increments)
energy ™w DevFloat[Nb] X-ray Energy (4.09 < e keV < 40) [Nb = nbModules]
energyMax ro DevFloat Maximum X-ray Energy keV
energyMin ro DevFloat Minimum X-ray Energy keV

continues on next page

9.2. Camera devices

171

Lima Documentation, Release 1.9.8

Table 3 — continued from previous page

Attribute name RW | Type Description
flatField ro DevLong[1280*Nb] | Flat field correction values
flatFieldCorrection ™w DevString Enable/Disable Flat Field Correction Mode (ON/OFF)
gateMode w DevString Enable/Disable gate mode (ON/OFF)
gates w DevLong Number of gates per frame
hwStatus ro DevString The hardware status
inputSignalPolarity w DevString Input Signal Polarity (RISING_EDGE/FALLING_EDGE)
kthresh ro DevFloat[Nb] Threshold Energy (4.0 < e keV < 20) [Nb = nbModules]
kthreshEnergy w DevFloat[2] Threshold & Energy keV
kthreshMax ro DevFloat Maximum Threshold Energy keV
kthreshMin ro DevFloat Minimum Threshold Energy keV
maxNbModules ro DevLong Maximum nos. of Mythen modules
module ™ DevLong Number of selected module (-1 = all)
nbits ™w DevString Number of bits to readout (BPP24/BPP16/BPP8/BPP4)
nbModules ™ DevLong Number of modules in the system
outputSignalPolarity w DevString Output Signal Polarity (RISING_EDGE/FALLING_EDGE)
predefinedSettings w DevString Load predefined energy/kthresh settings (Cu/Ag/Mo/Cr)
rateCorrection ™w DevString Enable/Disable rate correction mode (ON/OFF)
sensorMaterial ro DevLong The sensor material (O=silicon)
sensorThickness ro DevLong The sensor thickness um
serialNumbers ro DevLong[Nb] Serial nos. of Mythen modules [Nb = nbModules]
systemNum ro DevLong The serial number of the Mythen
tau ™w DevFloat[Nb] Dead time constants for rate correction [Nb = nbModules]
testPattern o DevLong[1280*Nb] | Read back a test pattern
triggered w DevString Enable/Disable triggered mode (ON/OFF)
useRawReadout ™w DevString Raw readout packed Mode (ON/OFF)
version ro DevString The software version of the socket server
Commands
Command name | Arg. in Arg. out Description
Init DevVoid | DevVoid Do not use
State DevVoid | DevLong Return the device state
Status DevVoid | DevString Return the device state as a string
LogStart DevVoid | DevVoid Start logging server activity (use sparingly)
LogStop DevVoid | DevVoid Stop logging server activity
LogRead DevVoid | DevVoid Print logging file to terminal
ReadFrame DevLong | DevVarULongArray | [in] frame number [out] a frame of mythen data
ReadData DevVoid | DevVarULongArray | [out] all frames of mythen data
ResetMythen DevVoid | DevVoid Reset

172 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

9.2.11 Pilatus Tango device

This is the reference documentation of the Pilatus Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Pilatus camera plugin section.

Properties

This camera device has no property.

Property | Manda-| Default value Description

name tory

host_name | No localhost Pilatus computer hostname

host_port | No 41234 Pilatus camserver port number

con- No /home/det/ p2_det/config/ | Configuration file path, read to get pilatus version (2 or 3)
fig_file cam_data/ camera.def and the camera size (height and width)

tmpfs_path| No /lima_data Path to the temporary file-system where camserver will
store the images
Attributes
Attribute name RW | Type Description

threshold_gain

w DevString

The detector threshold gain (LOW,MID,HIGH,ULTRA HIGH)

fill_mode

w DevString

The gap fill mode (ON,OFF)

threshold

™ DevLong

The threshold level of detector in eV

energy_threshold

™w DevFloat

The energy threshold in keV (set the gain and the threshold)

trigger_delay

ble

™w DevDou-

The start exposure delay after the hard trigger

nb_exposure_per_frame | rw

DevLong

The number of exposure/frame to set an accumulation of frames

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2. Camera devices

173

Lima Documentation, Release 1.9.8

9.2.12 PCO Tango device

This is the reference documentation of the PCO Tango device.

You can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the PCO camera plugin section.

174 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Properties

Property name

Mandatory

Default value

Description

debug_control

No

0

Enable/Disble the debug
(0/1)

debug_module

No

0

To set the debug module list (in hex format

¢ None = 0x001

e Common =
0x002

e Hardware =
0x004

¢ HardwareSe-
rial = 0x008

¢ Control =
0x010

* Espia = 0x020

» EspiaSerial =
0x040

¢ Focla = 0x080

¢ Camera =
0x100

¢ CameraCom
= 0x200

e Test = 0x400

* Application =
0x800

debug_format

To set the debug format (i1

e DateTime
0x001

¢ Thread
0x002

e Module
0x004

* Obj = 0x008

¢ Funct =0x010

¢ FileLine =
0x020

* Type = 0x040

¢ Indent =
0x080

¢ Color =0x100

debug_type

To set the debug type (in h

¢ Fatal = 0x001

¢ Error = 0x002

* Warning =
0x004

e Trace = 0x008

¢ Funct =0x010

9.2. Camera devices

e Param 175
0x020

e Return =
0x040

n hex format 0x..

ex format 0x....)

Lima Documentation, Release 1.9.8

Attributes

Attribute name RW Type Description

acqTimeoutRetry ™ DevLong Maximum Timeout retries
during acq (O - infinite)

adc w DevLong Number of working
ADC’s

adcMax ro DevLong Maximum number of
ADC’s

binlnfo ro DevLong PCO hw binning info

bitAlignment w DevString
Bit alignment

* MSB (0)

* LSB (1)
bytesPerPixel ro DevLong Bytes per Pixel
camerasFound ro DevString List of cameras found dur-

ing the Open search
camlInfo ro DevString General camera parame-
ters information
camName 1o DevString Camera Name
camNameBase ro DevString Camera Name (Pco)
camNameEx o) DevString Camera Name, Interface,
Sensor
camType ro DevString Camera Type
cdiMode ™w DevLong
Correlated Double Imaging Mode
e en-
abled/disabled
=1/0 (rw)
* not allowed =
-1 (ro)

clXferPar ro DevString General CameralLink pa-
rameters

cocRunTime ro DevDouble cocRunTime (s) - only
valid after the camera is
armed

coolingTemperature 1o DevDouble Cooling Temperature

debugInt w DevString PCO plugin internal de-
bug level (hex format:
0x....)

debugIntTypes ro DevString PCO plugin internal de-
bug types

continues on next page

176 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Table 4 — continued from previous page

Attribute name RW Type Description
doubleImageMode ™w DevLong
Double Image Mode
e en-
abled/disabled
=1/0 (rw)
* not allowed =
-1 (ro)
firmwarelnfo ro DevString Firmware info
frameRate o DevDouble Framerate, calculated as:
1/cocRunTime (1/s)
general CAPS1 ro DevString General PCO CAPSI1
value (hex and bin)
info ro DevString General camera parame-
ters information
lastError ro DevString The last PCO error mes-
sage
lastImgAcquired ro DevLong Last image acquired (dur-
ing recording)
lastiImgRecorded ro DevLong Last image recorded (dur-
ing recording)
logMsg ro DevString Last Log msgs
logPcoEnabled ro DevLong PCO logs are enabled
maxNbImages ro DevLong The maximum number
of images which can be
acquired by the camera
(recording mode)
paramsInfo ro DevString Values of the PCO proper-
ties params
pixelRate 1o DevLong Actual Pixel Rate (Hz)
pixelRateInfo ro DevString Pixel Rate information
pixelRateValidValues 1o DevString Allowed Pixel Rates
recorderForcedFifo w DevLong Forced Fifo Mode (only
for recording cams)
roilnfo ro DevString PCO ROl info
roiLastFixed ro DevString Last fixed ROI info
rollingShutter w DevLong
Rolling Shutter Mode as it
¢ 1 =ROLLING
* 2=GLOBAL
e 4 = GLOBAL
RESET
rollingShutterInfo ro DevString Rolling Shutter info
rollingShutterStr w DevLong Rolling Shutter Mode as
str (only for some types
of EDGE)
temperaturelnfo ro DevString Temperature info

continues on next page

9.2. Camera devices

177

nt (only for some

Lima Documentation, Release 1.9.8

Table 4 — continued from previous page

Attribute name RW Type Description
test w DevString Debug test function (do
not use it)
timestampMode w DevLong
Timestamp mode
* 0 =none
1 = BCD

coded stamp
in the first 14
pixel

2 = BCD
coded stamp
in the first 14
pixel + ASCII

text
«3 = ASCII
text (only
for some
cameras)
traceAcq ro DevString Debug information for
some types of acq
version ro DevString Version information of the
plugin
versionAtt ro DevString Version of att file
versionSdk ro DevString PCO SDK Release
Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do NOT use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAt- DevString: At- | DevVarStringArray: Return the authorized string value list for a given at-
trString Val- tribute name String value list tribute name
ueList
talk DevString DevString WARNING: use this command for test only, This is a
backdoor cmd and it can distrub Lima

9.2.13 PerkinElmer Tango device

This is the reference documentation of the PerkinElmer Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the PerkinElmer camera plugin section.

178 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Properties

This device has no property.

Attributes

Attribute name | RW | Type Description

correction_mode | rw DevString | ‘NO’, ‘OFFSET ONLY’ or ‘OFFSET AND GAIN’
gain ™ DevLong | The gain value, from 0 to 63

keep_first_image | rw DevString | ‘YES’ or ‘NO’, you can decide to trash the 1st image

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAt- DevString: Attribute name DevVarStringArray: Return the authorized string value list
trString- String value list for a given attribute name
ValueList
startAcqOff- | DevVarDoubleArray: DevVoid Start acquisition for an offset calibra-
setlmage nb_frames, exposure_time tion
startAcq- DevVarDoubleArray: DevVoid Start an acquisition for an gain calibra-
Gainlmage nb_frames, exposure_time tion

9.2.14 Pixirad Tango device

This is the reference documentation of the Pixirad Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Pixirad camera plugin section.

Properties
Property Manda- Default Description
name tory value
ip_address Yes N/A The ip address or the hostname of the detector computer inter-
face
port_number No 6666 The port number for detector (DAQ commmands)
initial_model No PX8 Model type PX1, PX2 or PX8

9.2. Camera devices

179

Lima Documentation, Release 1.9.8

180 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Attributes
Attribute name RW Type Description
high_threshold0 ™w DevDouble High Energy threshold 0
(KeV)
low_threshold0 w DevDouble Low Energy threshold 0
(KeV)
high_threshold1 ™w DevDouble High Energy threshold 1
(KeV)
low_threshold1 w DevDouble Low Energy threshold 1
(KeV)
dead_time_fi d DevStri
cac_time_free_mode v evsting Enable or disable the free mode dead-time:
DEAD_TIME_FREE_MODE_(
DEAD_TIME_[FREE_MODE_(
cool- w DevDouble Cooling temperature set-
ing_temperature_setpoint point for the peltier mod-
ule of the detector
high_voltage_biais w DevDouble Bias tension for the high
voltage in manual mode
high_voltage_delay_before| aiw DevDouble Delay for the hv before
acquisition
h_v_refresh_period ™w DevShort How many image before
hv is reset
delay_between_frames 'w DevShort Delay between frame in
loop acquisition (millisec-
ond)
1 d DevStri
color_mode w evString Color mode:
COLMODE_1COL0
COLMODE_2(COL
COLMODE_1COL1
COLMODE_DTF
COLMODE_4COL
fig_build DevStri
sensor_config_but w ev>trng The configuration build:
* PX1
* PX2
* PX8
trsf_mod DevStri
r8l_mode ™ CYSHInG Moderated or unmoderated udp transport,
- UMOD
« UNMODH
9.2. Camera devices * MOD 181
h_v_bias_mode_power 'w DevBoolean Enable (True) or disable

(False) the high voltage

hvhrid made

P S 4

NeavQirino

CDTE Aar A AQ

Lima Documentation, Release 1.9.8

Please refer to the Pixirad documention for more information on parameter meanings.

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2.15 PhotonicScience Tango device

This is the reference documentation of the PhotonicScience Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the PhotonicScience camera plugin section.

Properties

Property Manda- | Default Description

name tory value

cam- Yes N/A the path to the camera DLL library file e.g.: ImageS-
era_library_path tar4022_v2.5imagestar4022control.dll

Attributes

This camera device has no attribute.

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name
182 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

9.2.16 PointGrey Tango device

This is the reference documentation of the PointGrey Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the PointGrey camera plugin section.

Properties
Prop- Manda- De- Description
erty tory fault
name value
cam- Yes N/A The serial number of the camera, used to get the connection
era_serial
packet_sizeNo -1 The packet size, in byte
packet_delayo -1 The packet inter delay , in us last both parameters can be used to tune the camera
GigE bandwidth, please refer to the camera documentation for more information
Attributes
Attribute name RW | Type Description
gain w DevDouble The camera gain factor, in dB
auto_gain ™ DevBoolean | Auto gain mode can be switched on or off
auto_exp_time ™w DevBoolean | The camera can be set to auto-exposure mode
auto_frame_mode | rw DevBoolean | The camera can be set to auto frame rate mode
frame_rate 'w DevDouble The frame rate, in fps
packet_size ™w DevLong See the corresponding property
packet_delay ™w DevLong See the corresponding property
exp_time_range 0o DevDouble[] | Return the exposure time range (min,max) in ms
gain_range 1o DevDouble[] | Return the gain range (min,max) in dB
frame_rate_range | ro DevDouble[] | Return the frame rate range (min,max) in fps
Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2. Camera devices

183

Lima Documentation, Release 1.9.8

9.2.17 Prosilica Tango device

This is the reference documentation of the Prosilica Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Prosilica camera plugin section.

Properties
Property name | Mandatory | Default value | Description
cam_ip_address | Yes N/A The camera’s ip or hostname
Attributes
This device has no attribute.
Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2.18 RayonixHs Tango device

This is the reference documentation of the RayonixHs Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the RayonixHs camera plugin section.

Properties

Property name Manda- Default Description
tory value

frame_mode No single The frame mode, single or fast_transfer
frame_trigger_signal_type No opto The frame trigger signal type (input #1)
sequence_gate_signal_type | No opto The gate signal type (input #2)
electronic_shutter_enabled No false The electronic shutter true or false to activate or not
cooler_temperature_setpoint | No -120 The cooling system temperature setpoint in Celsuis
sen- No -80 The detector (sensor) temperature setpoint in Cel-
sor_temperature_setpoint suis
outputl_signal_type No cmos The output #1 signal type
output2_signal_type No cmos The output #2 signal type
outputl_id No shutter The output #1 signal source
output2_id No frame the output #2 signal source

184 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

The Rayonix HS input/output system supports different type of signals:
¢ OPTO/OPTO_INVERTED/CMOS/CMOS_PULLDOWN/CMOS_PULLUP/CMOS_PULLDOWN_INVERTED/CMOS_P
And it provides a output multiplexer for both outputs within the following list of sources:

* SHUTTER/INTEGRATE/FRAME/LINE/SHUTTER_OPENING/SHUTTER_CLOSING/SHUTTER_ACTIVE/TRIGGER

Attributes
Attribute name RW | Type Description
frame_mode ™w DevString The frame mode, single or fast_transfer

frame_trigger_signal_type ™w DevString | The frame trigger signal type (input #1)
sequence_gate_signal_type ™w DevString | The gate signal type (input #2)
electronic_shutter_enabled ™w DevString The electronic shutter true or false to activate or not
cooler_temperature_setpoint | rw DevDouble | The cooling system temperature setpoint in Celsuis
sensor_temperature_setpoint | rw DevDouble | The detector (sensor) temperature setpoint in Celsuis

outputl_signal_type ™w DevString | The output #1 signal type

output2_signal_type ™w DevString | The output #2 signal type

outputl_id w DevString | The output #1 signal source

output2_id ™w DevString | The output #2 signal source

vacuum_valve 'w DevString The vacuum valve command true or false to open or close

Warning: be careful with the temperature setting (and vacuum valve), the operating temperature is factory-determined
and should never be changed. There is no reason to run the detector at a warner temperature.

For the signal type and source the possible values are listed above in the Properties section.

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2.19 Simulator Tango device

This is the reference documentation of the Simulator Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Simulator camera plugin section.

9.2. Camera devices 185

Lima Documentation, Release 1.9.8

Properties

Property name | Mandatory | Default value | Description
peaks No N/A A gauss peak list [x0,y0,w0,A0,x1,y1,wl,Al...]
peak_angles No N/A The base rotation angle for each peak
fill_type No Gauss The image fill type: Gauss or Diffraction
rotation_axis No rotationy Peak move policy: STATIC, ROTATIONX, ROTATIONY
Attributes
Attribute name | RW | Type Description
peaks ™w Spectrum,DevDouble | The gauss peak list [x0,y0,w0,A0,x1,yl,wl,Al...]
peak_angles W Spectrum,DevDouble | The base rotation angle for each peak
grow_factor ™w DevDouble The Grow factor for gauss peaks
fill_type W DevString The image fill type: Gauss or Diffraction
rotation_axis ™w DevString The rotation axis policy: Static, RotationX or RotationY
diffraction_pos ™wW Spectrum,DevDouble | The source diplacement position: x and y
diffraction_speed | rw Spectrum,DevDouble | The source diplacement speed: sx and sy
rotation_angle ™wW DevDouble The peak rotation angle in deg
rotation_speed ™ DevDouble The peak rotation speed in deg/frame
Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name
186 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

9.2.20 SlisDetector Tango device

This is the reference documentation of the PSI SlsDetector Tango device.

You can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the SlsDetector camera plugin section.

9.2. Camera devices 187

Lima Documentation, Release 1.9.8

Properties

Property name Mandatory Default value Description
config_fname Yes . Path to the SlsDetector
config file
apply_corrections No True Perform corrections on
each frame
high_voltage No 0 Initial detector high volt-
age (V) (set to 150 if al-
ready tested)
fixed_clock_div No 0 Initial detector fixed-
clock-div
threshold_energy No 0 Initial detector threshold
energy (eV)
tolerate_lost_packets No True Initial tolerance to lost
packets
pixel_depth_cpu_affinity_maNo [] Default Pix-
elDepthCPUA(ffin-

ityMap as Python
string(s) defining a
dict: {<pixel_depth>:
<global_affinity>}, be-
ing global_affinity a

tuple: (<recv_list>,
<lima>, <other>, <net-
dev_grp_list>), where

recv_list is a list of

tupples in the form: (<lis-

teners>, <port_threads>),

where listeners and

port_threads are tuples

of affinities, lima and

and other are affinities,

and netdev_grp_list is a

list of tuples in the form:

(<comma_separated_netdey
<rx_queue_affinity_map>),
the latter in the form of:

{<queue>: (<irg>,

<processing>)}. Each

affinity can be ex-

pressed by one of the

functions: Mask(mask)

or CPU(<cpul>[, ...,

<cpulN>]) for independent

CPU enumeration

188

Chapter 9. Python TANGO server

_name_list>,

Lima Documentation, Release 1.9.8

9.2. Camera devices 189

Lima Documentation, Release 1.9.8

Attributes

Attribute name

RW

Type

Description

config_fname

1o

DevString

Path to the SlsDetector
config file

hostname_list

10

DevVarStringArray

The list of the Eiger half-
modules’ hostnames

apply_corrections

o

DevBoolean

Pixel software corrections
are applied on each frame

dac_name_list

10

DevVarStringArray

The list of the DAC sig-
nals’ names

dac_<signal_name>

™

DevVarLongArray

Array with the DAC <sig-
nal_name> value for each
half-module, in A/D units

dac_name_list_mv

10

DevVarStringArray

The list of the DAC sig-
nals’ names supporting
milli-volt units

dac_<signal_name>_mv

DevVarLongArray

Array with the DAC <sig-
nal_name> value for each
half-module, in milli-volt
units

adc_name_list

(]

DevVarStringArray

The list of the ADC sig-
nals’ names

adc_<signal_name>

™

DevVarDoubleArray

Array with the ADC <sig-
nal_name> value for each
half-module, in user units
(deg C, etc.)

pixel_depth

DevString

The image pixel bit-depth

4 (not im-
plemented in
LImA yet)

-8

* 16

° 32

raw_mode

™w

DevBoolean

Publish image as given by
the Receivers (no SW re-
construction)

threshold_energy

™w

DevLong

The energy (in eV) the
pixel discriminator thresh-
olds (Vemp & Trim bits)
is set at

high_voltage

™w

DevShort

The detector high voltage
(in'V)

tx_frame_delay

DevLong

Frame Tx delay (6.2 ns
units)

all_trim_bits

™

DevVarLongArray

Array with the pixel trim-
ming value [0-63] for each
half-module, if all the
pixels in the half-module
have the same trimming
value, -1 otherwise

clock_div

IW

DevString

190

Chapter ¢

o T Raf asiest Yeider

L]

FULL_SPEED

Lima Documentation, Release 1.9.8

Please refer to the PSI/SLS Eiger User’s Manual for more information about the above specfic configuration parame-

ters.

Note: CPU-affinity control now acts, in a per-pixel_depth basis, on the following execution elements:

¢ Receiver listener threads

e Receiver writer threads

* Lima control & processing threads

 Other processes in the OS

» Network devices’ processing tasks (kernel space)

Network devices can be grouped, each group will have the same CPU-affinity for the processing tasks.

Commands
Command | Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAt- DevString: At- | DevVarStringArray: | Return the authorized string value list for a given at-
trStringVal- | tribute name String value list tribute name
uelist
putCmd DevString DevVoid Command setting a SlsDetector parameter (no response)
getCmd DevString: get | DevString: com- | Command getting a SlsDetector parameter (with re-
command mand result sponse)
getNbBad- DevLong: DevLong: Get the number of bad frames in the current (or last)
Frames port_idx nb_bad_frames acquisition for the given receiver port (-1=all)
getBad- DevLong: DevVarLongArray: Get the list of bad frames in the current (or last) acquisi-
FramelList port_idx bad_frame_list tion for the given receiver port (-1=all)

9.2.21 Ueye Tango device

This is the reference documentation of the Ueye Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation

in the Ueye camera plugin section.

Properties

Default value

Property name

Mandatory

Description

address

No

0

The video address

9.2. Camera devices

191

Lima Documentation, Release 1.9.8

Attributes

This device has no attribute.

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2.22 Ultra Tango device

This is the reference documentation of the Ultra Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Ultra camera plugin section.

Properties
Property name | Mandatory | Default value | Description
headIpaddress No 192.168.1.100 | The detector head IP address
hostIpaddress No 192.168.1.103 | The host IP address
tcpPort No 7 The tcp echo port
udpPort No 5005 The upd port
nPixels No 512 The number of detector pixels
Attributes
Attribute name RW | Type Description
headColdTemp ro DevFloat The head cold temperature in K
heatHotTemp ro DevFloat The head hot temperature in K
tecColdTemp ro DevFloat
tecSupply Volts ro DevFloat

adcPosSupplyVolts | ro DevFloat
adcNegSupplyVolts | ro DevFloat
vinPosSupplyVolts | ro DevFloat
vinNegSupplyVlots | ro DevFloat

headADCVdd ro DevFloat
headVdd ™w DevFloat
headVref rw DevFloat
headVrefc ™w DevFloat
headVpupref w DevFloat
headVclamp w DevFloat

continues on next page

192 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Table 5 — continued from previous page

Attribute name RW | Type Description
headVres1 ™w DevFloat
headVres2 w DevFloat
headVTrip ™w DevFloat
fpgaXchipReg rw DevULong
fpgaPwrReg w DevULong
fpgaSyncReg ™w DevULong
fpgaAdcReg ™w DevULong
frameCount ro DevULong
frameError ro DevULong
headPowerEnabled | rw DevBoolean
tecPowerEnabled ™w Devboolean
biasEnabled ™w Devboolean
syncEnabled w Devboolean
calibEnabled ™w Devboolean
8pCEnabled ro DevBoolean
tecOverTemp ro DevBoolean
adcOffset w DevFloat[16]
adcGain ™w DevFloat[16]
aux1 w DevULong[2]
aux?2 ™w DevULong[2]
xchipTiming w DevULong[9]

Please refer to the manufacturer’s documentation for more information about the above listed parameters and how to

use them.

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name
SaveConfigura- | DevVoid DevVoid Save the current configuration
tion
RestoreConfig- | DevVoid DevVoid Restore the latest configuration
uration

9.2. Camera devices

193

Lima Documentation, Release 1.9.8

9.2.23 V412 Tango device

This is the reference documentation of the V412 Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the V412 camera plugin section.

Properties

Property name | Mandatory | Default value | Description
video_device No /dev/videoO The video device path

Attributes

This device has no attribute.

Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2.24 Xh Tango device

This is the reference documentation of the Xh Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the X camera plugin section.

Properties
Property name | Mandatory | Default value | Description
cam_ip_address | Yes N/A The detector IP address
port No 1972 The port number
config_name No “config” The default configuration filename

194 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Attributes
Attribute RW | Type Description
name
clockmode wo | De- The clockmode, XhInternalClock, XhESRF5468Mhz or Xh-
vString ESRF1136Mhz
nbscans wr | DevLong | the number of scans for accumulation
Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name
reset DevVoid DevVoid Perform a hardware reset of the detector
setHeadCaps DevVarULongAr- | DevVoid Caps for AB, Caps for CD
ray
sendCommand | DevString DevVoid Backdoor command to send direct command
to the da.server server

9.2.25 Xpad Tango device

This is the reference documentation of the Xpad Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Xpad camera plugin section.

Properties
None.
Attributes
None.
Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name

9.2. Camera devices

195

Lima Documentation, Release 1.9.8

9.2.26 Xspress3 Tango device

This is the reference documentation of the Xspress3 Tango device.

you can also find some useful information about the camera models/prerequisite/installation/configuration/compilation
in the Xspress3 camera plugin section.

test reference to camera plugin section: ADSC camera

Properties
Property Manda{ Default | Description
name tory value
baslpad- No none Override the base IP address (e.g. 192.168.0.1) from which all other addresses
dress are calculated or NULL to use the default
bas- No none Override the base MAC address (e.g. 02.00.00.00.00) from which all other card
MacAd- MAC address's are calculated or NULL to use the default
dress
basePort No none Override the base IP port number or O to use the default
cre- No False true = do not create a scope data module
ateScope-
Module
nbFrames No 1 Number of 4096 energy bin spectra timeframes
scopeMod- | No NULL The scope data module filename or NULL to use the default
Name
nbCards No 1 The number of xspress3 cards that constitute the xspress3 system, between 1
and XSP3_MAX_CARDS
nbChans No -1 Limit the number of channels
debug No 0 debug message (0 = off, 1=normal, 2=verbose)
noUDP No False True = do not do UDP connection
cardIndex | No none Starting card index
directory- No non The directory name to save and restore configurations
Name
196 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Attributes

Attribute name RW | Type Description
card W DevLong
numChan o DevLong
numCards () DevLong
chansPerCard ro DevLong
maxNumChan () DevLong
binsPerMca o DevLong
windows ™w DevLong[32]
runMode ™w DevBoolean([4]
clocks w Devbooleanp[3]
goodsThreshold ™w DevLong[16]
dtcEnergy ™wW DevDouble
dtcParameters w DevDouble[48]
scaling ™ DevDouble[8]
fanTemperatures r'w DevDouble[50]
fanController ™ DevDouble[2]
setPoint wo | DevDouble

roi WO DevLong[25]
useDtc ™w DevBoolean
setTiming wo | DevLong
adcTempLimit wo | DevLong
setPlayback wo | DevBoolean
playbackfilename | wo | DevString
dataSource ™w DevLong|[8]

9.2. Camera devices

197

Lima Documentation, Release 1.9.8

Commands
Com- Arg. in Arg. out Description
mand
name
Init DevVoid DevVoid Do not use
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
getAt- DevString: Attribute name Dev- Return the authorized string value
trString- VarStringAr- list for a given attribute name
ValueList ray: String
value list
Reset DevVoid DevVoid
Init- DevLong: channel DevVoid
Brams
Pause DevVoid DevVoid
Restart DevVoid DevVoid
Arm DevVoid DevVoid
Clear DevVoid DevVoid
SaveSet- | DevVoid DevVoid
tings
Restore- DevBoolean DevVoid Force restore if major revision
Settings of saved file does not match the
firmware revision
InitRois DevLong: channel DevVoid
ReadHis- | DevVarLongArray: frame, channel DevVarULon- Return the histogram data
togram gArray:
Read- DevVarLongArray: frame, channel DevVarULon- Return the scaler data
Scalers gArray:
StartScope | DevVoid DevVoid
Load- DevVarLongArray: srcO,srcl, | DevVoid
Playback | [num_streams, digital]
Forma- DevVarLongArray: chan,[nbits_eng, | DevVoid
tRun aux1_mode, adc_bits, min_samples,
aux2_mode, pileup_reject

9.3 Plugin devices: software operation and extra interfaces

User-defined software plugins can be used to execute arbitrary image-based operations. An entry point in the control
layer completely exports the ProcessLib functionality, allowing an external code to be called on every frame. The
software operation can be implemented in C++ or Python.

The software operations on image are embedded into individual Tango devices and are available in the plugins/
directory. They are automatically exported by the LimaCCDs server.

The software operations are of two types, Sink or Link :

» Link operation is supposed to modify the frame data, so it gets the frame data as input parameter and it
will return a “corrected” image (e.g. Mask/Flatfield/BackgroundSubstraction).

* Sink operation is taken the frame data as input parameter to apply some software operation in order to
return new data like statistics, peak positions, alarm on saturation ... etc.

198 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

In addition to sink/link plugin device, a plugin can just be implemented to provide/export a subset of the Lima interface
or a legacy interface for some specific client applications (e.g SPEC, LimaTacoCCD plugin).

Today there are about 8 standard plugin devices:

BackgroundSubstraction : link operation, to correct the frames with a background image (substraction)
FlatField: link operation to correct the frames with a flatfield image (divide + option normalisation)

Mask: link operation to mask pixels. Very useful if some pixel are not working properly and if you want to set
then to a fix value or to zero.

PeakFinder: thanks to Teresa Numez from DESY, a sink operation which can detect diffraction peaks.

Roi2Spectrum: sink operation to apply ROI spectrum on the frames. You can define more than one spectra with
ROI coordinates and by specifying in which direction you need to bin the values, vertical or horizontal.

RoiCounter: sink operation to get calculating statistics on image regions.

LimaTacoCCD: extra interface for TACO clients, it only provides commands (TACO does not have attribute !),
it is still used at ESRF for SPEC.

LiveViewer: extra interface to provide a live view of the last acquired image, can be used from atkpanel.

If you need to implement your own plugin device we can provide you some example codes, use the mailing-list
lima@esrf.fr to get help.

9.3.1 Background Substraction

The Background substraction correction is a simple operation you can active when a detector has some dark-current
noise independent of the dose of photons it will receive. To set the correction you must provide to the device a
background image file (setBackgroundImage command) and then start the correction (start command). Instead of
providing an external image file you can simply ask the device to use an image taken. Call the command takeNex-
tAcquistionAsBackground to set the internal background image from an acquisition image. One can apply an extra
offset correction using the offset attribute value.

Properties

This device has no property.

Attributes

Attribute name | RW | Type Description

delete_dark_after| mmad | Dev- If true the device will delete the file after reading Can be useful to not keep
Boolean | obsolete dark image file after use

offset rw | Dev- Set a offset level to be applied in addition to the background correction
Long

RunLevel rw | Dev- Run level in the processing chain, from 0 to N
Long

State ro State OFF or ON (stopped or started)

Status ro De- “OFF” “ON” (stopped or started)
vString

9.3. Plugin devices: software operation and extra interfaces 199

mailto:lima@esrf.fr

Lima Documentation, Release 1.9.8

Commands
Command name Arg. in Arg. out | Description
Init DevVoid DevVoid Do not use
setBackgroundImage DevString | DevVoid Full path of background image file
Start DevVoid DevVoid Start the correction for next image
State DevVoid DevLong | Return the device state
Status DevVoid DevString | Return the device state as a string
Stop DevVoid DevVoid Stop the correction after the next image
takeNextAcquisitionAsBackground | DevVoid DevVoid next taken image will replace the background

9.3.2 Bpm

This is the BPM (Beam Position Monitoring) device. It aims to detect an X-ray beam spot and returns statistics (X,y
positions, FWHM, ...). It takes images and calculates the beam position using the builtin task BPM of the processlib
library. It can also push Tango event containing jpeg view of the image and several statistics and information (listed
bellow) in a DevEncoded attribute name bvdata.

Properties

Propertie name | RW | Type Description

en- RW | DevBoolean if set to false, Bpm won’t push bvdata or other attributes through

able_tango_event Tango.

calibration RW | DevVarDoubleAr- | Contains the calibration in X and Y ([X,Y]), value in unit/pixel. |
ray

beammark RW | DevVarLongAr- Contains coordinates (X,Y) in pixels of a beam mark set by the
ray user.

200 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Attributes
At- | RW | Type Description
tribute
name
buffer-RW | De- | Size of the buffer where a certain amount of images will be store before re-writing on the first
size V- one.
Long
X RO | De- | coordinate on the x axis of the beam return by the BPM task. If the algorithm couldn’t find a
V- X value then it is set at -1.
Dou-
ble
y RO | De- | Same as x but for Y axis.
V-
Dou-
ble
txy | RO | De- | Return an array [timestamp,X,y] of the last acquisition.
V-
Dou-
ble
au- | RW | De- | true or false for the AOI mode.
to- V-
maticd_aoi | Boolean
in- | RO | De- | Intensity of the area around beam.
ten- V-
sity Dou-
ble
max_{ikénsityDe- | Maximum intensity on the image.
V-
Dou-
ble
proj_x RO | De- | Array containing sum of all pixel’s intensity on axis x
V-
Long
proj_y RO | De- | Same as proj_x but on y axis.
V-
Long
fwhm_RO | De- | Full width at half of maximum on the profil X.
V-
Dou-
ble
fwhm_RO | De- | same as fwhm_x but on y axis profil.
V-
Dou-
ble
au- | RW | De- | Activate autoscale transformation on the image. (use min and max intensity on it in order to
toscale V- scale).
Boolean
lut_meR®d | De- | Method used in the transformation of image. can be “LOG” or “LINEAR”.
vString
color| MM | De- | Image in black and white(color_map=false), or use a color map to display colors based on
V- intensity.
Boolgan
bv- | RO | De- | Attribute regrouping the image (jpeg format) and numerous information on it, such as times-
data [VEn-[tamp,_ number of the frame ——Everything is pack throught struck modut
93" Rlugin|daylee3h 30 NATR QRRITNMANGL SR THLIAGAS reat. WARNING : vou noed to e B0
decode function in order to read (can be found in the webserver Bpm, currently here :
https://gitlab.esrf.fr/limagroup/bpm-web)
cal- | RW | De- | Attribute version of the calibration property.

https://gitlab.esrf.fr/limagroup/bpm-web

Lima Documentation, Release 1.9.8

Commands
Com- Arg.IN Arg.OUT | Description
mands
name
Start DevVoid | DevVoid Start Bpm device.
Stop DevVoid | DevVoid Stop Bpm device.
getRe- DevLong | DevVar- Take a number as parameter and return an array containing (framenb,X,y)
sults Dou- values, starting to the frame number ask until there is no more image.
bleArray
GetPix- DevVar- DevLong Return the intensity of pixel (x,y) passed as parameters
ellnten- LongAr-
sity ray
HasBack- | DevVoid | Dev- Is there a background already in place ?
ground Boolean
Take- DevVoid | DevVoid Take the current image and set it as Background, using the
Back- Core. BACKGROUNDSUBSTRACTION module.
ground
Reset- DevVoid | DevVoid Reset the Background.
Back-
ground
NOTE

This plugin is supposed to replace the old BeamViewer plugin but with limited functionalities for the moment. Some
other plugins will be created in the future. This plugin is mainly used in conjunction with the bpm webserver applica-

tion

9.3.3 FlatField

The flat fied correction can be used to remove artifacts from the images that are caused by variations in the pixel-to-
pixel sensitivity of the detector and/or by the distortions in the optical path. Here the correction consists in providing a
reference image taken using a uniform photon exposure. Then each raw image will be corrected by dividing the pixel
values by their corresponding reference values (flatfield image pixels).

To set the correction you must provide to the device a flatfield image file (setFlatFieldImage command) and then start
the correction (start command).

Properties

This device has no property.

202

Chapter 9. Python TANGO server

https://gitlab.esrf.fr/limagroup/bpm-web
https://gitlab.esrf.fr/limagroup/bpm-web

Lima Documentation, Release 1.9.8

Attributes
Attribute name | RW | Type Description
RunLevel ™w DevShort Run level in the processing chain, from 0 to N
normalize w DevBoolean | If true the flatfield image will be normalized first (using avg signal)
State ro State OFF or ON (stopped or started)
Status ro DevString “OFF” “ON” (stopped or started)
Commands

Command name | Arg. in Arg. out | Description

Init DevVoid DevVoid Do not use

setFlatFieldlmage | DevString | DevVoid | Full path to flatfield image file

Start DevVoid DevVoid Start the correction for next image

State DevVoid | DevLong | Return the device state

Status DevVoid DevString | Return the device state as a string

Stop DevVoid DevVoid Stop the correction after the next image
9.3.4 Mask

The mask correction is very useful when you have some defective pixels on your detector sensor. Then you can provide
a mask image file which can either applies a fixed value for those defective pixel (mask type == DUMMY) or sets
those pixels to zero count (mask type = STANDARD).

To set the correction you must provide to the device a flatfield image file (setFlatMaskImage command) and then
start the correction (start command).

Properties

This device has no property.

9.3. Plugin devices: software operation and extra interfaces

203

Lima Documentation, Release 1.9.8

Attributes
Attribute name RW Type Description
RunLevel ™w DevShort Run level in the process-
ing chain, from 0 to N
type w DevString]
Set the type of mask correction:
- DUMMY,
replace the
pixel value
with the mask
image pixel
value
* STANDARD,
if the mask
pixel value is
equal to zero
set the image
pixel value
to zero oth-
erwise keep
the image
pixel value
unchanged
State ro State OFF or ON (stopped or
started)
Status ro DevString “OFF” “ON” (stopped or
started)
Commands
Command Arg. in Arg. out Description
name
getAttrString- DevString: At- | DevVarStringArray: Return the authorized string value list for a
ValueList tribute name String value list given attribute name
Init DevVoid DevVoid Do not use
setMaskImage DevString DevVoid full path for the mask image file
Start DevVoid DevVoid set the correction active
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
Stop DevVoid DevVoid set the correction inactive
204 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

9.3.5 PeakFinder

This is a nice plugin developed at DESY which can find peaks on an image and returns the positions of the peaks.

Once the configuration is ok you can start the task using Start command and stop the task calling the Stop command.

Properties

This device has no property.

Attributes
Attribute name RW Type Description
BufferSize w DevLong Circular buffer size in im-
age, default is 128
ComputingMode ™w DevString The computing algorithm|:
« MAXIMUM,
find peak at
maximum
* CM, find peak
at center of
mass
CounterStatus ro DevLong Counter related to the cur-
rent number of proceeded
images
RunLevel w DevLong Run level in the process-
ing chain, from 0 to N
State ro State OFF or ON (stopped or
started)
Status ro DevString “OFF” “ON” (stopped or
started)
Commands
Command Arg. in Arg. out Description
name
Init DevVoid DevVoid Do not use
readPeaks DevVoid DevVarDoubleArray Return the peaks positions
frameO0,x,y,framel,..
setMaskFile DevVarStringAr- | DevVoid Full path of mask file
ray
Start DevVoid DevVoid Start the operation on image
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a
string
Stop DevVoid DevVoid Stop the operation on image

9.3. Plugin devices: software operation and extra interfaces

205

Lima Documentation, Release 1.9.8

9.3.6 Roi2Spectrum

The Region-of-Interest to Spectrum operation is very useful to provide online integration of some areas of your detec-
tor. The integration of the pixel values can set along the Y direction or the X direction. You must create first the Rois
by providing unique names (addNames command) and then set the Roi position using the index and the x,y, width,
height (setRois command). The direction for integration (so-called mode) can be set using te setRoiModes command.
Once the configuration is ok you can start the task using Start command and stop the task calling the Stop command.
The spectrum data can be retrieved by calling the readlmage command, the command returns the spectrums as a stack

stored into an image.

Properties

This device has no property.

Attributes
Attribute name | RW | Type Description
BufferSize ™w DevLong | Circular buffer size in image, default is 128
CounterStatus ro DevLong | Counter related to the current number of proceeded images
RunLevel w DevLong | Run level in the processing chain, from 0 to N
State ro State OFF or ON (stopped or started)
Status ro DevString | “OFF” “ON” (stopped or started)

206

Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Commands
Com- Arg. in Arg. out Description
mand
name
addNames| DevVarStringAr- DevVarStringArray list of Roi in- | Set the names and return the corresponding
ray list of Roi | dexes indexes
names
clearAll- | DevVoid DevVoid Remove the Rois
Rois
get- DevVoid DevVarStringArray Return the list of Roi names
Names
getRoiModeBevVarString Ar- DevVarStringArray Return the Roi modes
ray
getRois DevVarStringAr- DevVarStringArray Return the Roi positions
ray list of Roi | list of Roi position
names (roi_id,x,y,width,heigth,. . .)
Init DevVoid DevVoid Do not use
readIm- DevVarLongAr- DevVarLongArray
age ray
re- roi_id,first image | spectrum stack Return the stack of spectrum from the spec-
moveRois ified image index until the last image ac-
quired
setRois DevArLongArray | DevVoid Set roi positions
(roi_id,x,y,w,h,...)
Start DevVoid DevVoid Start the operation on image
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as a string
Stop DevVoid DevVoid Stop the operation on image

9.3.7 RoiCounter

The Region-of-Interest to Counter operation is very useful to provide online statistics on some detector areas. The
operation will calculate for each image acquired the average, the standard deviation, the sum, the minimum and the
maximum pixel values.

The Roi can be defined either with rectangle coordinates (x begin,y begin, width, height) or with arc coordinates (center
X, center y, radius1, radius2, angle start, angle end). Different commands are provided for that purpose: setRois and
setArcRois.

You must create first the Rois by providing unique names (addNames command) and then set the Roi position using
the Roi index and the position (rectangle or arc position).

The statistics can be retrieved by calling the readCounters command, the command returns a list of statistics per Roi
and frame.

In addition to the statistics calculation one can set a mask file (setMask command) where null pixel will not be taken
into account.

9.3. Plugin devices: software operation and extra interfaces 207

Lima Documentation, Release 1.9.8

Properties

This device has no property.

Attributes
Attribute name | RW | Type Description
BufferSize ™w DevLong | Circular buffer size in image, default is 128
CounterStatus ro DevLong | Counter related to the current number of proceeded images
RunLevel ™w DevLong | Run level in the processing chain, from O to N
State ro State OFF or ON (stopped or started)
Status ro DevString | “OFF” “ON” (stopped or started)
Commands
Command name Arg. in Arg. out Description
addNames DevVarStringArray list of | DevVarStringArray list of | Set the names and return
Roi names Roi indexes the corresponding indexes
clearAllRois DevVoid DevVoid Remove the Rois
getNames DevVoid DevVarStringArray Return the list of Roi
names
getRoiModes DevVarStringArray DevVarStringArray Return the Roi modes
getRois DevVarStringArray list of | DevVarStringArray Return the Roi positions
Roi names list of Roi position
(roi_id,x,y,width,heigth,. ..
getArcRois lzeVVa.rStrmgArray list of DevVarStringArray list Return the ArcRoi posi-
rcRoi names . » tions
of ArcRoi position
(roi_id,x,y,width,heigth,. . .
Init DevVoid DevVoid Do not use
readCounters DevVarLongArray DevVarLongArray
removeRois roi_id,first image spectrum stack Return the stack of spec-
trum from the specified
image index until the last
image acquired
setArcRois DevVarDoublArray DevVoid Set the Arc Rois
(roi_id0,centerx,centery,
ra-
dius1,raduis2,start_angle,
end_angle,roi_idl,...)
setMaskFile DevVarStringArray full | DevVoid Set the mask file
path file
setRois DevArLongArray DevVoid Set roi positions
(roi_id0,x,y,w,h,roi_id1..)
Start DevVoid DevVoid Start the operation on im-
age
State DevVoid DevLong Return the device state
Status DevVoid DevString Return the device state as
a string
Stop DevVoid DevVoid Stop the operation on im-
age
208 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

9.3.8 LimaTacoCCD

This device has been created by legacy and it provides the only interface that SPEC software is supporting for “ESRF

General CCD Dev” CCD-like controller.

Properties
Property name Manda- Default Description
tory value
Manual Asyn- No False Flag for manual writting, can improve the performance of
chronousWrite data saving
Attributes
This device has no attributes.
Commands
Command name Arg. in Arg. out Description
TacoState DevVoid DevLong Return the device taco-
like state
DevCcdStart DevVoid DevVoid Start the acquisition
DevCcdStop DevVoid DevVoid Stop the acquisition
DevCcdRead DevVarLongArray[2]: DevVarCharArray: the | Return the image as a
frame_nb,frame_size raw image string
DevCcdReadAll DevLong: DevEncoded Return the concate-
frame_size nated frames in a
DevEncoded format
DATA_ARRAY (see De-
vEncoded DATA_ARRAY)
DevCcdReadJPeg DevShort: jpeg compres- | DevVarCharArray: Jpeg | Return a jpeg image
sion image
DevCcdWrite DevVoid DevVoid Save the last image
DevCcdSetExposure DevFloat DevVoid Set the exposure time in
second
DevCcdGetExposure DevVoid DevFloat Return the exposure time
in second
DevCcdSetRol DevVarLongArray[4]: DevVoid Set the new Region-of-
startx,endx,starty, endy Interest
DevCcdGetRoi DevVoid DevVarLongArray[4]: Return the last Region-of-
startx,endx,starty, endy Interest
DevCcdSetFilePar DevStringArray[5]
DevCcdHeader
DevCcdlmageHeader
DevCcdHeaderDelimiter
DevCcdGetFilePar
DevCcdDepth
DevCcdYSize

continues on next page

9.3. Plugin devices: software operation and extra interfaces

209

Lima Documentation, Release 1.9.8

Table 6 — continued from previous page
Arg. in Arg. out

Command name Description
DevCcdXSize
DevCcdReset
DevCcdSetMode
DevCcdGetMode
DevCcdWriteFile
DevCcdGetBin
DevCcdSetBin
DevCcdSetFrames
DevCcdGetFrames
DevCcdSetTrigger
DevCcdGetTrigger
DevCcdReadValues
DevCcdSigValues
DevCcdGetLstErrMsg
DevCcdGetCurrent
DevGetDebugFlags
DevSetDebugFlags

9.3.9 LiveViewer

This device was create for backward compatibility with former graphical applications used at ESRF by the diagnostic
group for the monitoring of the electron beam. It is no longer maintain. Instead we recommend to use the video API
provided via the main device LimaCCDs.

Nevertheless you will find here the of the available properties, attributes and commands.

Properties
Property name Mandatory | Default value | Description
AcquisitionAutoStart | No False If true start the acquistion at device startup
Attributes
Attribute name | rw | Type Description
Depth ro | DevShort Image depth in byte
Exposure rw | DevDouble Exposure time in second
ExternalTrigger | rw | DevBoolean External trigger active if true
FrameRate rw | DevDouble Frame rate in fps
Frames rw | DevLong Number of frames to acquire
Gain rw | DevDouble Gain, support depends on the camera model
Image ro | Image, DevUShort | The last image taken
ImageCounter ro | DevLong The image counter
Jpeglmage ro | DevEncoded The last image in JPEG format, only supported for B/W cameras.
JpegQuality rw | DevLong JPEG quality factor from O to 10
Roi rw | DevLong,Spectrum | The Roi position, start x, start y, width, height
State ro | State OFF or ON (stopped or started)
Status ro | DevString “OFF” “ON” (stopped or started)
210 Chapter 9. Python TANGO server

Lima Documentation, Release 1.9.8

Commands

Command name | Arg.in | Arg. out | Description

Init DevVoid | DevVoid | Do not use

Reset DevVoid | DevVoid Reset the camera, factory setting is apply
ResetRoi DevVoid | DevVoid Remove the Roi, camera set to full size
Start DevVoid | DevVoid Start the camera for live acquisition
State DevVoid | DevLong | Return the device state

Status DevVoid | DevString | Return the device state as a string

Stop DevVoid | DevVoid Stop the camera live

9.3. Plugin devices: software operation and extra interfaces 211

Lima Documentation, Release 1.9.8

212 Chapter 9. Python TANGO server

CHAPTER
TEN

UNDERSTAND THE PLUGIN ARCHITECTURE

10.1 Library structure

The library structure is divided into two main layers: the control, containing the common control and processing code,
and the hardware which is implementing the detector-specific part. The control layer provides the library interface to
the high level application. User requests to configure and control the acquisition are gathered by the control layer, so
the hardware layer functionality is limited to the generation the image frames in a best-effort basis.

The control layer is responsible of:
* Adapting the received image geometry if it does not match the user requests,

* Executing the frame processing chain.

10.2 Generic Interface

The Hardware Layer defines the interface between the Control Layer and the controller library. It provides the minimal
functionality needed for the Control Layer to satisfy the user requests. The main class in the Hardware Layer is the
lima::HwInterface, providing the interface to the Control Layer. In order to provide a flexible and evolvable
interface, the configuration of this layer is implemented as a set of features (capabilities) that may or may not be
implemented by the hardware.

The capabilities can be grouped in three categories:

1. Standard. Includes the synchronization parameters (exposure time, ext. trigger, etc), the detector information
(Detector model, Max size, etc..) is considered standard and must be implemented for all detectors.

2. Extended. Optional common features like image transformations (binning, Rol, flip), advanced acquisition
modes (kinetics, frame transfer), and extended mechanisms (camera serial line)

3. Specific. These are detector-specific features that can not be treated in a generic interface

As a camera plugin developer, your mission, should you choose to accept it, will consist in writing the code for the
lima::HwInterface class and its depending classes (.e.g the capabilities classes).

213

Lima Documentation, Release 1.9.8

Hwinterface

Interface Camera
- m_cap_list —
+ Interface() —Camore)
+ ~Interface() et
et setExpTimel)
R getStatus()
- peperecd) m_cam getibAcouiredFramesi)
Lo getDetectaridacel)
T startdoogl)
+ getStatus() ophen)
+ getiblcouiredFrames() e
+ getMbHwAcquiredFrames() teset)
Lo zetMbFrames()
getMbFrames()
getBufferCieiObil
setTrightode])
getTrighlode)
zetimaneType()
getimaceType)
=etBin)
m_clet_info m_syno g:mi:g .
checkBin
DetinfoCtriObj SyncCtriobj RoiCtriObj BinCtriObj checkRoi()
DetinfoCtroki0) SyneCirlOki() RoiCHrIobi() BinCHrCki() 3322:8
~DetinfoCtriohi() ~SyneCHObic) ~RoiCtriChi() ~BinCiriobi0
getMaximageSizel) checkTrighiods() setRair) S
getDetectorimageSize() setTrightoce) getRail) getElln()_
getDetimage Typel) et Trightade) checkRoil) checkBin()
getCLrimageType) setExpTime()
setCurimageType) getExpTimed)
oetPixelSizel) setlatTime()
getDetector Typel) getlatTimer)
getDetectoriodelr) sethlbHwFrames()
registerMaximageSizeCallback() gethbHwFrames()
unregistermaximagesize Callback() get¥alidRanges()

Fig. 1: Figure 1. Class diagram of a camera plugin.

214 Chapter 10. Understand the plugin architecture

Lima Documentation, Release 1.9.8

10.3 Hardware Interface

lima::HwInterface is the glue layer between the Control Layer and the camera plugin implementation. It in-
forms LImA about the capabilities provided by the hardware.

class lima::HwInterface
As an interface to the Control Layer, this class exports the capabilities provided by the hardware.

It is implemented by every camera plugins.

Public Functions
virtual void getCapList (CapList&) const =0
Returns a list of capabilities.

virtual void reset (ResetlLevel reset_level) =0
Reset the hardware interface.

virtual void prepareAcq() =0
Prepare the acquisition and make sure the camera is properly configured.

This member function is always called before the acquisition is started.

virtual void startAcq() =0
Start the acquisition.

virtual void stopAcq() =0
Stop the acquisition.

virtual void getStatus (StatusType &status) =0
Returns the current state of the hardware.

virtual int getNbAcquiredFrames ()
Returns the number of acquired frames.

virtual int getNbHwAcquiredFrames () =0
Returns the number of acquired frames returned by the hardware (may differ from getNbAcquiredFrames
if accumulation is on)

The 1ima: :HwInterface: :getStatus () member function should return the following information:

struct lima::HwInterface::Status
A tuple of status with acquisition and detector status / mask.

Public Types

enum Basic
Basic detector states (some detectors may have additional states)
Values:

enumerator Fault
Fault.

enumerator Ready
Ready for acquisition.

enumerator Exposure
Counting photons.

10.3. Hardware Interface 215

Lima Documentation, Release 1.9.8

enumerator Readout
Reading data from the chip.

enumerator Latency
Latency between exposures.

enumerator Config
Fault.

Public Members
AcqStatus acq
Global acquisition status.

DetStatus det
Compound bit flags specifying the current detector status.

DetStatus det_mask
A mask specifying the detector status bits that are supported by the hardware.

LIMA Hardware
Control interfica:Class Capablllty Synchronization
Class
- type :
. i Buffering
4) C hilit - description = el
w= + getCapabilities]) —f - TetdObj T
+ reset() ; =
+ prepare() Infa tn
+ start() =
% + stop()
CE + getAcgFrameMr() a
+ getStatus() Callbacks
L alist B R
¥ iZontrol Ohbjects
Flip Binning Ral RolBinOffset
s
E ... E CL')
5 i O
H =
: T
i .
i o P
E Kinetics =erial Line Timing Frarme Transfer :

Fig. 2: Figure 2. Hardware capabilites block diagram

216 Chapter 10. Understand the plugin architecture

Lima Documentation, Release 1.9.8

10.4 Standard Capabilities

These capabilities are mandatory for all the detectors. They define the minimum functionality necessary for image
acquisition. Three capability classes (DetInfo, Sync and BuffCtrl) are listed below with their set/get methods which
have to be provided within the new camera plugin code.

10.4.1 Detector Information
The interface 1ima: :HwDet InfoCtrlObj returns static information about the detector and the current image
dimension.

class lima::HwDetInfoCtrlObj
Provides static information about the detector and the current image dimension.

Public Functions
virtual void getMaxImageSize (Size &max_image_size) =0
Return the maximum size of the image.

virtual void getDetectorImageSize (Size &det_image_size) =0
Return the size of the detector image, it is always equal or greater than the MaxImageSize.

virtual void getDefImageType (ImageType &def image_type) =0
Returns the default data type of image (ushort, ulong, ...)

virtual void getCurrImageType (ImageType &curr_image_type) =0
Returns the current data type of image (ushort, ulong, ...).

virtual void getPixelSize (double &x_size, double &y_size) =0
Physical size of pixels (in mm)

virtual void getDetectorType (std::string &det_type) =0
Returns the type of the detector (Frelon, Maxipix, ...)

virtual void getDetectorModel (std::string &det_model) =0
Returns the model of the detector.

virtual void registerMaxImageSizeCallback (HwMaxImageSizeCallback &cb) =0
Register a callback called when the detector is reconfigured with a different geometry.

virtual void unregisterMaxImageSizeCallback (HwMaxImageSizeCallback &cb) =0
Unregister a callback previsouly registered with registerMaxImageSizeCallback.

inline virtual void setUserDetectorName (const std::string &username)
Set a detector user name.

inline virtual void getUserDetectorName (std::string &username)
Get a detector user name.

Note: The HwMaxImageSizeCallback callback functions let the hardware inform the Lima library of a change
of the detector maximum image size. This change can happen with some detectors which can be reconfigured with
a different geometry. This camera capability is NOT a Roi nor a Bin capability. For instance, the maxipix detector
is a mosaic of several individual sensor chips and it can be configured and reconfigured with different geometries
according to user needs. A 2x2 maxipix detector can be configured in a 1x1 geometry.

10.4. Standard Capabilities 217

Lima Documentation, Release 1.9.8

10.4.2 Synchronization

The interface 1ima: : HwSyncCtr10b j controls the acquisition parameters related to synchronization.

Parameters Description

set/getExpTime Frame exposure time

set/getLatTime Latency time between frames

checkTrigMode A check method which returns True/False for the sup-
ported trigger modes

set/getTrigMode

Triggering mode:

e Internal: software triggering

o ExtStart: one external signal to start the
whole sequence acquisition (one or more
frames per sequence)

* MultExtStart: one external signal for each
frame in the acquisition sequence

 Gate: controls start and stop of each frame

» ExtStartStop: one start signal to start acqui-
sition of one frame and one signal to stop
it

10.4.3 Buffer Management

The interface 1 ima : : HwBufferCtr10b j controls the image memory buffer allocation and management. They are

used:

* As temporary frame storage before saving, allowing disk/network speed fluctuations.

* To permanently hold images that can be read by the user after the acquisition is finished.

These buffer functionalities may be implemented by the hardware layer (kernel driver in the case of the Espia). If not,
an auxiliary buffer manager class will be provided to facilitate (and unify) its software implementation. The buffer
management parameters are:

Parame- | Description

ters

NbBuffers | Number of image buffers in memory.

NbCon- The number of concatenated frames per buffer.

catFrames

NbAc- The number of detector frames to accumulate into a single buffer.
cFrames

MaxNbBuffeifhis Read-Only parameter indicates the maximum number of buffers that can be allocated, given the
size of the frame and the number of (concatenated) frames per buffer.

Buffer-
Mode

Buffer filling mode (linear or circular)

The buffer manager must also provide the following member functions:

e lima::HwBufferCtrlObj::getBufferPtr ()

e lima::HwBufferCtrlObj::getFramePtr ()

e lima::HwBufferCtrlObj::getFrameInfo ()

218

Chapter 10. Understand the plugin architecture

Lima Documentation, Release 1.9.8

In most of simple cases, one just need to create a 1 ima: : SoftBufferCtrl10Obj class instance within the Camera
class instance to store the frames. A good example of a simple implementation is available in the Andor camera plugin

code.

10.4.4 Frame callback

The hardware must provide callbacks after each acquired frame. The callback function should receive the following

information:

Parameters

Description

AcqFrameNb

Index of the frame since the start of the acquisition

FramePtr

Pointer to the frame memory

FrameDim

Structure holding the width, height and type of the frame

TimeStamp

Time (in sec.) since the start of the acquisition

The frame callbacks are implemented by means of an auxiliary class 1 ima: : HwFrameCallback, which will be
used by the Control Layer. From the Hardware Layer point of view, the standard capability control object must

implement two functions:

¢ setFrameCallbackActive(bool cb_active)

» frameReady(<callback_frame_info>)

10.4. Standard Capabilities

219

Lima Documentation, Release 1.9.8

220 Chapter 10. Understand the plugin architecture

CHAPTER
ELEVEN

SETTING UP A DEVELOPMENT ENVIRONMENT

LImA build dependency were updated with the latest version of LImA and that may be an issue on older distro where
the tools are not available, namely:

e CMake >=3.1
* GCC with C++11 support >=4.8.1

The first option is to build these packages from source but it is a PITA. One other option is to build with packages
managed by Conda and the following instruction should get you started.

11.1 Install Conda

If you don’t have Conda installed, get Miniconda and follow the install instruction.

11.2 Create a build environment

A good practice would be not to pollute the base environment and work in a dedicated 1 ima environment:

conda create -n lima python=3
source activate lima

Then install the build tools:

For linux

conda install cmake gxx_linux-64

For windows, just be sure you have visual studio 2017 x64 installed

You might need to leave the Conda environment and enter it again so that the environment variables (CXX) needed by
CMake are set:

source deactivate
source activate lima

Finally, install the 1 ima-core package (and dependencies) with Conda:

conda install lima-core

And you are good to code! A good way to start is to use our seed project at:

221

https://cmake.org/
https://conda.io/docs
https://conda.io/miniconda.html
https://conda.io/docs/user-guide/install/index.html

Lima Documentation, Release 1.9.8

git clone --bare https://github.com/esrf-bliss/Lima-camera-template.git
cd Lima-camera-template.git
git push —--mirror https://github.com/esrf-bliss/Lima-camera-mycamera.git

Once you have your new repo ready, clone it and happy coding!

git clone https://github.com/esrf-bliss/Lima-camera-mycamera.git
cd Lima-camera-mycamera
git checkout develop

Once you are ready to build, here are the typical CMake commands for an out of source build (in the build folder) and
for installing in the current Conda environment ($CONDA_PREF IX)

For linux:

cmake -Bbuild -H. -DLIMA_ENABLE_PYTHON=1 -DCAMERA_ENABLE_TESTS=1 -DCMAKE_FIND_ROOT_
—~PATH=$CONDA_PREFIX -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX -DPYTHON_SITE_PACKAGES_DIR=
—+$SCONDA_PREFIX/<Python site package location>

cmake —--build build --target install

For windows:

cmake -Bbuild -H. -DLIMA_ENABLE_PYTHON=1 -DCAMERA_ENABLE_TESTS=1 -DCMAKE_FIND_ROOT_
—PATH=%CONDA_PREFIX% -DCMAKE_INSTALL_PREFIX=%CONDA_PREFIX% -DPYTHON_SITE_PACKAGES_
—DIR=%CONDA_PREFIX%/<Python site package location>

cmake —-build build --target install --config Release

222 Chapter 11. Setting up a development environment

https://cmake.org/

CHAPTER
TWELVE

SOURCE CODE ORGANIZATION

This chapter provides general guidelines to follow, to share a plugin with the community.

12.1 Source code

12.1.1 Plug-ins submodules

The source files and documentation of each new plug-in must be located under Lima/Camera as shown figure below.

l—C amera

L —mycamera

cmake

conda

\:came ra
tango

doc

include

——python

sip

src

tango
test

To maintain homogeneity between the different plug-ins, each plug-in must have at minimum the following folders:

* /src : contains the source files. Plug-ins must be developed in C++. The “src” folder must contain the
following files :

DetectorNameInterface.cpp : interface class between detector capabilities from the hardware
interface and the control layer (mandatory)

DetectorNameDetInfoCtrObj.cpp : capabilities to get static informations about the detector
(mandatory)

DetectorNameBufferCtrlObj.cpp : capabilities to control the image memory buffer allocation
(mandatory)

DetectorNameSyncCtrlObj.cpp : capabilities to control the image memory buffer allocation
(mandatory)

DetectorNameRoiCtrlObj.cpp : capabilities to get a ROI (optional)

DetectorNameBinCtrlObj.cpp : capabilities to make pixel binning (optional)

223

Lima Documentation, Release 1.9.8

DetectorNameVideoCtrlObj.cpp : capabilities to make video mode only for non-scientific detec-
tors (optional)

DetectorNameShutterCtrlObj.cpp : capabilities to control shutter (optional)

DetectorNameFlipCtrlObj.cpp : capabilities to flip image (optional)

DetectorNameEventCtrlObj.cpp : capabilities to generate event (optional)

DetectorNameSavingCtrlObj.cpp : capabilities to save images in different formats (optional)
e /include : contains the header files relative to the sources files described before.

e /doc : contains at least index . rst for plug-in documentation. Other files such as image can be added. The
minimum content of the index file is detailed in the documentation section.

¢ Other folders can be added based on need. The contents of this file must be described in the documentation.

Note: If optional capabilities are not defined, they are emulated by the Lima Core.

12.1.2 Camera device

Once the plug-in was developed, you must create a camera device to execute all commands on the camera. This
device can be developed in Python or C++. Python devices must be located on “Lima/applications/tango/camera”,
C++ devices on “Lima/applications/tango/LimaDetector”

In order to enhance the general software quality of Device Servers developed by the various institutes using Tango,
a Design and Implementation Guidelines document has been written by SOLEIL. This document can be downloaded
here.

It is recommended that the camera device comply with these design guidelines.

12.2 Class names

Again, to maintain homogeneity, it is recommended to follow this nomenclature for the class names:
* DetectorName::Camera
* DetectorName::Interface
* DetectorName::SyncCtrlObj
* DetectorName::DetInfoCtrlObj

As an example, one can look at the Prosilica plugin for a real implementation or at the simulator plugin for a mock
implementation.

224 Chapter 12. Source code organization

https://tango-controls.readthedocs.io/en/latest/development/device-api/ds-guideline

Lima Documentation, Release 1.9.8

12.3 How to test the new plugin with python

In order to communicate with the underlying detector hardware, the lima client must instantiate the main object of
the LImA framework 1 ima: : CtControl. To be instantiated, 1 ima : : Ct Cont rol requires an interface inherited
from common 1 ima: : HwInterface. This interface requires the Camera object that encapsulates dependency with
detector and its SDK.

For instance if you are using the python binding for the Prosilica camera, a client application initialization should do:

from Lima import Prosilica as ProsilicaAcqg
from Lima import Core

my_prosilica_ip_address = 192.168.1.2
we need the camera object first
camera = ProsilicaAcqg.Camera (my_prosilica_ip_address)

create the HwInterface which needs the camera as unique parameter
camera_interface = ProsilicaAcqg.Interface (camera)

Now create the :cpp:class: lima::CtControl’ and passed to Lima the new HwInterface
control = Core.CtControl (camera_interface)

The camera is now under control and it can be used to acquire images ! First get the sub-objects for the parameter
setting of the detector, acquisition, saving and more if necessary.

acqg = control.acquisition ()
saving = control.saving/()

acq.setAcgExpoTime (0.1)
acqg.setAcgNbFrames (10)

pars=saving.getParameters ()
pars.directory="'/buffer/test_lima'
pars.prefix="testl '

pars.suffix="'.edf'
pars.fileFormat=Core.CtSaving.EDF
pars.savingMode=Core.CtSaving.AutoFrame
saving.setParameters (pars)

pass parameters to camera hw interface
control.prepareAcq ()

start the acquisition
control.startAcqg()

Note: Camera object is only used to enhance the separation between the generic interface and the API driver of the
detector. It is similar to a proxy.

The camera class is also supposed to provide an access to the specific configuration of the detector. For instance if your
detector has a threshold setting or a built-in background correction available you should implement these features in
the Camera class. The 1ima: : HwInterface will not know about the specific configuration and a client application
should explicitly implement the configuration. A good example is the Andor camera, where there are few extra features
like the temperature set-point (set/getTemperatureST()) or the cooler control (set/getCooler(bool)).

With the Andor camera one can set the cooling as:

12.3. How to test the new plugin with python 225

Lima Documentation, Release 1.9.8

camera.setTemperatureSP (-50)
camera.setCooler (True)

current_temp = camera.getTemperature ()

The Lima project code provides some client application based on TANGO protocol for the remote access. One can
find a python implementation under applications/tango and a C++ version in applications/tango/LimaDetector. The
python server has been developed at ESRF and being used on lot of beamlines and the C++ server is the SOLEIL
version which is also used on beamlines.

The LimaCCDs python server has its own documentation here.

226 Chapter 12. Source code organization

CHAPTER
THIRTEEN

IMPLEMENTATION RECOMMENDATIONS

Use the pImpl idiom to implement the Camera class, breaking compile-time dependency between the vendor SDK and
the rest of LImA and downstream applications.

The C++ ABI is sadly [known to be not stable](https://isocpp.org/files/papers/n4028.pdf) between versions of com-
pilers and even between build compiled with the same toolset but different switches. Most vendor SDKs are closed
source and cannot be recompiled at will which is the reason why we recommend to use their C version if it exists.
Wrapping the C++ API in a C APl is a possible workaround.

227

https://en.cppreference.com/w/cpp/language/pimpl
https://isocpp.org/files/papers/n4028.pdf

Lima Documentation, Release 1.9.8

228 Chapter 13. Implementation Recommendations

CHAPTER
FOURTEEN

WRITE A DOCUMENTATION

Plugin documentation must be located in “Lima/camera/detector/name/doc”. It is composed of at least an “index.rst”
file which contains information to install, configure and implement a camera plugin. The presence of this documenta-
tion is required to share a plugin with Lima community.

Plugins documentation is available in the section “Supported Cameras”.

The table below describes information that must be present in the index file :

229

Lima Documentation, Release 1.9.8

Detector Name

Picture of the detector

Introduction

In this section you should describe the detector :

- Manufacter, model

- Interface buses (USB, GIGE, Cameralink, specific acquisition boards,...)
- Type of applications (scientific, industrial, medical, ...)

- OS Supported

Prerequisite

In this section you should specify librairies, driver or software packages required to compile the plugin :
- Version
- Installation path
- Specific procedure for installation (script to execute, environment variables,...)

Installation & Module configuration

In this section you should describe specific procedure for plugin installation :
- Configuration file "config.inc”
- Post installation actions
- Refer to the installation section to compile and install the plugin

Capabilities

Standard capabilities :
Although the plugin as been implement in respect of the mandatory capabilities, some limitations which are due

to the camera and SDK features can exist. You should provide here extra information for a better understanding
of the three mandatory capabilities below :

- HwDetInfo

- HwSync

- HwBuffer

Optional capabilities :
If optional capabilities are supported by the detector, they should be listed in this section. If some limitiations

exist, they should be described here. Available optional capabilities are :

- HwRoi

- HwBin

- HwVideo

- HwShutter

- HwFlip

- HwEvent

- HwSaving

Configuration

This section must summarize different actions to configure the device server and the camera :
- Procedure to configure camera (external tools to set ip adress, ...)
- Properties of the device server to configure
- How to connect the camera
- Others

How to use

In this section you should give a code example to test the plugin. Code may be written in C++ or Python

230 Chapter 14. Write a documentation

CHAPTER
FIFTEEN

C++ API

Unfortunately very limited documentation is available from the source but that should improve over time.

15.1 User API

In this section we cover the classes that defines the user interface.

15.1.1 Hello, Lima!

Let’s get started with a simple example of an image acquisition function using the simulator camera.

// A camera instance and its hardware interface
Simulator: :Camera simu;
Simulator::Interface hw(simu);

// The control object
CtControl ct = CtControl (&hw);

// Get the saving control and set some properties

CtSaving xsave = ct.saving();
save->setDirectory ("./data");
save->setPrefix ("test_");

save->setSuffix (".edf");
save—>setNextNumber (100) ;

save->setFormat (CtSaving: :EDF) ;
save->setSavingMode (CtSaving: :AutoFrame) ;
save->setFramesPerFile (100);

// Set the binning or any other processing
Bin bin (2, 2);

CtImage *image = ct.image();

image—->setBin (bin);

// Get the acquisition control and set some properties
CtAcquisition xacg = ct.acquisition();

acg->setAcgMode (Single) ;

acg->setAcqExpoTime (expo) ;
acg->setAcgNbFrames (nframe) ;

// Prepare acquisition (transfer properties to the camera)
ct.prepareAcq();

(continues on next page)

231

Lima Documentation, Release 1.9.8

(continued from previous page)

// Start acquisition
ct.startAcq();
std::cout << "SIMUTEST: acq started" << std::endl;

//
long frame = -1;
while (frame < (nframe - 1))
{
using namespace std::chrono;
high_resolution_clock::time_point begin = high_resolution_clock: :now();
usleep (100000);
CtControl::ImageStatus img_status;
ct.getImageStatus (img_status);
high_resolution_clock::time_point end = high_resolution_clock: :now();
auto duration = duration_cast<microseconds> (end - begin) .count();
std::cout << "SIMUTEST: acg frame nr " << img_status.LastImageAcquired
<< " - saving frame nr " << img_status.LastImageSaved << std::endl;
if (frame != img_status.LastImageAcquired) {
unsigned int nb_frames = img_status.LastImageAcquired - frame;
std::cout << " " << duration << " usec for " << nb_frames << " frames\n
;}",
std::cout << " " << le6 x nb_frames / duration << " fps" << std::endl;
frame = img_status.LastImageAcquired;

}
std::cout << "SIMUTEST: acq finished" << std::endl;

// Stop acquisition (not really necessary since all frames where acquired)
ct.stopAcql();

std::cout << "SIMUTEST: acqg stopped" << std::endl;

15.1.2 Control Interfaces

The control interface is the high level interface that controls an acquisition.

class lima::CtControl
Main client class which should be instantiated by the users in their acquisition software.

232 Chapter 15. C++ API

Lima Documentation, Release 1.9.8

Advanced control accessors
inline CtAcquisition *acquisition ()
Returns a pointer to the acquisition control.

inline CtSaving *saving ()
Returns a pointer to the saving control.

inline Ctlmage *image ()
Returns a pointer to the image control.

inline CtBuffer *buffer ()
Returns a pointer to the buffer control.

inline CtAccumulation *accumulation ()
Returns a pointer to the accumulation control.

inline CtVideo *wvideo ()
Returns a pointer to the video control.

inline CrShutter *shutter ()
Returns a pointer to the shutter control.

inline CtEvent *event ()
Returns a pointer to the event control.

Public Functions
void abortAcq ()
stop an acquisition and purge all pending tasks.

void stopAcgAsync (AcgStatus acq_status, ErrorCode error_code, Data &data)
aborts an acquisiton from a callback thread: it’s safe to call from a HW thread.

Creates a dummy task that calls stopAcq() and waits for all buffers to be released

void abortAcq (AcgStatus acq_status, ErrorCode error_code, Data &data, bool ctrl_mutex_locked =
This functionf?;S]%)EPRECATED.
Use stopAcqAsync instead

void registerImageStatusCallback (/mageStatusCallback &cb)
registerImageStatusCallback is not thread safe!!!

void unregisterImageStatusCallback (/mageStatusCallback &cb)
unregisterImageStatusCallback is not thread safe!!!

class _AbortAcqCallback : public TaskEventCallback

class _LastBaseImageReadyCallback : public TaskEventCallback
class _LastCounterReadyCallback : public TaskEventCallback
class _LastImageReadyCallback : public TaskEventCallback
class _LastImageSavedCallback : public TaskEventCallback
class _ReconstructionChangeCallback : public Callback
struct ImageStatus

class ImageStatusCallback

15.1. User API 233

Lima Documentation, Release 1.9.8

class ImageStatusThread: public Thread
class SoftOpErrorHandler : public EventCallback

struct Status

Acquisition Interface

class lima::CtAcquisition
This class control the acquisition of images given a hardware interface.
class _ValidRangesCallback : public ValidRangesCallback

struct Parameters

Saving Interface

class lima::CtSaving
Control saving settings such as file format and mode.

Saving modes

{

void set SavingMode (SavingMode mode)
set the saving mode for a saving stream

void get SavingMode (SavingMode &mode) const
get the saving mode for a saving stream

void setOverwritePolicy (OverwritePolicy policy, int stream_idx = 0)
set the overwrite policy for a saving stream

void getOverwritePolicy (OverwritePolicy &policy, int stream_idx = 0) const
get the overwrite policy for a saving stream

void setFramesPerFile (unsigned long frames_per_file, int stream_idx = Q)
set the number of frame saved per file for a saving stream

void getFramesPerFile (unsigned long &frames_per_file, int stream_idx = 0) const
get the number of frame saved per file for a saving stream

void setManagedMode (ManagedMode mode)
set who will manage the saving.

with this methode you can choose who will do the saving
* if mode is set to Software, the saving will be managed by Lima core
« if mode is set to Hardware then it’s the sdk or the hardware of the camera that will manage the saving.
Parameters
— mode: can be either Software or Hardware

void resetCommonHeader ()

}

clear the common header

234 Chapter 15. C++ API

Lima Documentation, Release 1.9.8

void setCommonHeader (const HeaderMap &header)
set the common header.

This is the header which will be write for all frame for this acquisition

void updateCommonHeader (const HeaderMap &header)
replace/add field in the common header

void get CommonHeader (HeaderMap &header) const
get the current common header

void addToCommonHeader (const HeaderValue &value)
add/replace a header value in the current common header

void updateFrameHeader (long frame_nr, const HeaderMap &header)
add/replace several value in the current frame header

void addToFrameHeader (long frame_nr, const HeaderValue &value)
add/replace a header value in the current frame header

void validateFrameHeader (long frame_nr)
validate a header for a frame.

this mean that the header is ready and can now be save. If you are in AutoHeader this will trigger the
saving if the data frame is available

void getFrameHeader (long frame_nr, HeaderMap &header) const
get the frame header.

Parameters
e frame_nr: the frame id
¢ header: the current frame header

void takeFrameHeader (long frame_nr, HeaderMap &header)
get the frame header and remove it from the container

void removeFrameHeader (long frame_nr)
remove a frame header

Parameters
e frame_nr: the frame id

void removeAllFrameHeaders ()
remove all frame header

void getStatistic (std::list<double>&, std::list<double>&, std::list<double>&, std::list<double>&,

) ~ intstream_idx = 0) const
get write statistic

void setStatisticHistorySize (int aSize, int stream_idx = 0)
set the size of the write time static list

int getStatisticHistorySize (int stream_idx =0) const
get the size of the write time static list

void clear ()
clear everything.

15.1. User API 235

Lima Documentation, Release 1.9.8

e all header
* all waiting data to be saved
¢ close all stream

void writeFrame (int frame_nr = -1, int nb_frames = 1, bool synchronous = true)
write manually a frame

Parameters
* aFrameNumber: the frame id you want to save
* aNbFrames: the number of frames you want to concatenate

void setStreamActive (int stream_idx, bool active)
activate/desactivate a stream

void getStreamActive (int stream_idx, bool &active) const
get if stream is active

void getMaxConcurrentWritingTask (int&, int stream_idx = 0) const
get the maximum number of parallel writing tasks

void setMaxConcurrentWritingTask (int, int stream_idx =0)
get the maximum number of parallel writing tasks

Public Functions

void setParameters (const Parameters &pars, int stream_idx = 0)
set saving parameter for a saving stream

Parameters
* pars: parameters for the saving stream
* stream_idx: the id of the saving stream

void getParameters (Parameters &pars, int stream_idx = 0) const
get the saving stream parameters

Parameters
* pars: the return parameters
e stream_idx: the stream id

void setDirectory (const std::string &directory, int stream_idx = 0)
set the saving directory for a saving stream

void getDirectory (std::string &directory, int stream_idx = (0) const
get the saving directory for a saving stream

void setPrefix (const std::string &prefix, int stream_idx = 0)
set the filename prefix for a saving stream

void getPrefix (std::string &prefix, int stream_idx = 0) const
get the filename prefix for a saving stream

236 Chapter 15. C++ API

Lima Documentation, Release 1.9.8

void setSuffix (const std::string &suffix, int stream_idx = 0)
set the filename suffix for a saving stream

void getSuffix (std::string &suffix, int stream_idx = 0) const
get the filename suffix for a saving stream

void setOptions (const std::string &options, int stream_idx = 0)
set the additional options for a saving stream

void getOptions (std::string &options, int stream_idx = 0) const
get the additional options for a saving stream

void setNextNumber (long number, int stream_idx = Q)
set the next number for the filename for a saving stream

void getNextNumber (long &number, int stream_idx =) const
get the next number for the filename for a saving stream

void setFormat (FileFormat format, int stream_idx = 0)
set the saving format for a saving stream

void getFormat (FileFormat &format, int stream_idx = 0) const
get the saving format for a saving stream

void setFormatAsString (const std::string &format, int stream_idx = 0)
set the saving format as string for a saving stream

void getFormatAsString (std::string &format, int stream_idx =(0) const
get the saving format as string for a saving stream

void getFormatList (std::list<FileFormat> &format_list) const
get supported format list

void getFormatListAsString (std::list<std::string> &format_list) const
get supported format list as string

void setFormatSuffix (int stream_idx = 0)
force saving suffix to be the default format extension

void getHardwareFormatList (std::list<std::string> &format_list) const
return a list of hardware possible saving format

class _ManualBackgroundSaveTask : public SinkTaskBase
manual background saving

class _NewFrameSaveCBK : public Callback
class _SavingErrorHandler : public EventCallback

struct Parameters

Public Functions

Parameters ()
Parameters default constructor.

15.1. User API 237

Lima Documentation, Release 1.9.8

Public Members

std::string directory
base path where the files will be saved

std::string prefix
prefix of the filename

std::string suffix
suffix of the filename

long nextNumber
next file number

FileFormat £fileFormat
the saving format (EDF,CBF...)

SavingMode savingMode
saving mode (automatic,manual. ..)

OverwritePolicy overwritePolicy
how you the saving react it find existing filename

std::string indexFormat
ie: %.4d if you want 4 digits

long framesPerFile
the number of images save in one files

class SaveContainer
Subclassed by lima::SaveContainerCbf, lima::SaveContainerEdf, lima::SaveContainerFits,
lima::SaveContainerHdf5, lima::SaveContainerNxs, lima::SaveContainerTiff

Public Functions

inline virtual bool needParallelCompression () const
should return true if container has compression or havy task to do before saving if return is true,
getCompressionTask should return a Task

See getCompressionTask

inline virtual SinkTaskBase *getCompressionTask (const CrSaving::HeaderMap&)
get a new compression task at each call.

this method is not call if needParallelCompression return false
See needParallelCompression

struct Stat

class Stream

class _CompressionCBK : public TaskEventCallback
compression callback

class _SaveCBK : public TaskEventCallback
save callback

class _SaveTask : public SinkTaskBase
save task class

238 Chapter 15. C++ API

Lima Documentation, Release 1.9.8

Image Interface

class CtImage
Control image processing settings such as ROI, binning and rotation.

Shutter Interface

class lima::CtShutter
Control shutter settings such as open and close time.

struct Parameters

Buffer Interface

class lima: :CtBuffer

Controls buffer settings such as number of buffers, binning and rotation.

class _DataDestroyCallback : public Callback

struct Parameters

15.1.3 Statuses

enum lima::AcqgStatus
The global acquisition status.

Values:

enumerator AcqReady
Acquisition is Ready.

enumerator AcqRunning
Acquisition is Running.

enumerator AcqgFault
An error occured.

enumerator AcqConfig
Configuring the camera.

enum lima::DetStatus
Compound bit flags specifying the current detector status.

Values:

enumerator DetIdle
enumerator DetFault
enumerator DetWaitForTrigger
enumerator DetShutterOpen
enumerator DetExposure
enumerator DetShutterClose
enumerator DetChargeShift

enumerator DetReadout

15.1. User API

239

Lima Documentation, Release 1.9.8

enumerator DetLatency

15.2 Camera Plugin API

15.2.1 Hardware Interface

The Hardware Interface is the low level interface that must be implemented by detector plugins.

class lima::HwInterface
As an interface to the Control Layer, this class exports the capabilities provided by the hardware.

It is implemented by every camera plugins.

Public Types

typedef struct lima::Hwinterface::Status StatusType
A tuple of status with acquisition and detector status / mask.

Public Functions
virtual void getCapList (CapList&) const =0
Returns a list of capabilities.

virtual void reset (ResetLevel reset_level) =0
Reset the hardware interface.

virtual void prepareAcq() =0

Prepare the acquisition and make sure the camera is properly configured.

This member function is always called before the acquisition is started.

virtual void startAcq() =0
Start the acquisition.

virtual void stopAcq() =0
Stop the acquisition.

virtual void getStatus (StatusType &status) =0
Returns the current state of the hardware.

virtual int getNbAcquiredFrames ()
Returns the number of acquired frames.

virtual int getNbHwAcquiredFrames () =0

Returns the number of acquired frames returned by the hardware (may differ from getNbAcquiredFrames

if accumulation is on)

struct Status
A tuple of status with acquisition and detector status / mask.

240

Chapter 15. C++ API

Lima Documentation, Release 1.9.8

Public Types
enum Basic
Basic detector states (some detectors may have additional states)

Values:

enumerator Fault
Fault.

enumerator Ready
Ready for acquisition.

enumerator Exposure
Counting photons.

enumerator Readout
Reading data from the chip.

enumerator Latency
Latency between exposures.

enumerator Config
Fault.

Public Members
AcqStatus acq
Global acquisition status.

DetStatus det
Compound bit flags specifying the current detector status.

DetStatus det_mask
A mask specifying the detector status bits that are supported by the hardware.

15.2.2 Capabilities interfaces

class lima::HwDetInfoCtrlObj
Provides static information about the detector and the current image dimension.

Public Functions
virtual void getMaxImageSize (Size &max_image_size) =0
Return the maximum size of the image.

virtual void getDetectorImageSize (Size &det_image_size) =0
Return the size of the detector image, it is always equal or greater than the MaxImageSize.

virtual void getDefImageType (ImageType &def image_type) =0
Returns the default data type of image (ushort, ulong, ...)

virtual void getCurrImageType (ImageType &curr_image_type) =0
Returns the current data type of image (ushort, ulong, ...).

virtual void getPixelSize (double &x_size, double &y_size) =0
Physical size of pixels (in mm)

15.2. Camera Plugin API 241

Lima Documentation, Release 1.9.8

virtual void getDetectorType (std::string &det_type) =0
Returns the type of the detector (Frelon, Maxipix, ...)

virtual void getDetectorModel (std::string &det_model) =0
Returns the model of the detector.

virtual void registerMaxImageSizeCallback (HwMaxImageSizeCallback &cb) =0
Register a callback called when the detector is reconfigured with a different geometry.

virtual void unregisterMaxImageSizeCallback (HwMaxImageSizeCallback &cb) =0
Unregister a callback previsouly registered with registerMaxImageSizeCallback.

inline virtual void setUserDetectorName (const std::string &username)
Set a detector user name.

inline virtual void getUserDetectorName (std::string &username)
Get a detector user name.

class lima::HwBufferCtrlObj
This interface controls the image memory buffer allocation and management.

Buffers are used:
* As temporary frame storage before saving, allowing disk / network speed fluctuations.

* To permanently hold images that can be read by the user after the acquisition is finished. These buffer
functionalities may be implemented by the hardware layer (kernel driver in the case of the Espia). If not,
an auxiliary buffer manager class will be provided to facilitate (and unify) its software implementation.
The buffer management parameters are :

Subclassed by lima::SoftBufferCtrlObj

Public Functions
virtual void *getBufferPtr (int buffer_nb, int concat_frame_nb=0) =0
Returns a pointer to the buffer at the specified location.

virtual void *getFramePtr (int acq_frame_nb) =0
Returns a pointer to the frame at the specified location.

virtual void getStartTimestamp (Timestamp &start_ts) =0
Returns the start timestamp.

virtual void getFrameInfo (int acq_frame_nb, HwFramelnfoType &info) =0
Returns some information for the specified frame number such as timestamp.

class Callback

class lima::HwSyncCtrlObj

Public Functions
virtual bool checkTrigMode (TrigMode trig_mode) =0
Check wether a given trigger mode is supported.

virtual void setTrigMode (TrigMode trig_mode) =0
Set the triggering mode.

virtual void getTrigMode (TrigMode &trig_mode) =0
Get the current triggering mode.

242 Chapter 15. C++ API

Lima Documentation, Release 1.9.8

virtual void setExpTime (double exp_time) =0
Set the frame exposure time.

virtual void getExpTime (double &exp_time) =0
Get the current frame exposure time.

virtual bool checkAutoExposureMode (AutoExposureMode mode) const
Check wether a given auto exposure mode is supported.

virtual void setHwAutoExposureMode (AutoExposureMode mode)
this method should be redefined in the subclass if the camera can managed auto exposure

virtual void setLatTime (double lat_time) =0
Set the latency time between frames.

virtual void getLatTime (double &lat_time) =0
Get the current latency time between frames.

class ValidRangesCallback

struct ValidRangesType

15.2.3 Callbacks

class HwFrameCallback

15.2.4 Implementations Helpers

class lima: :SoftBufferCtrlObj: public lima::HwBufferCtrlObj
This class is a basic HwBufferCtrlObj software allocation implementation, It can be directly provided to the
control layer as a HwBufferCtrlObj.

Public Functions
virtual void *getBufferPtr (int buffer_nb, int concat_frame_nb = 0)
Returns a pointer to the buffer at the specified location.

virtual void *getFramePtr (int acq_frame_nb)
Returns a pointer to the frame at the specified location.

virtual void getStartTimestamp (Timestamp &start_ts)
Returns the start timestamp.

virtual void getFrameInfo (int acq_frame_nb, HwFramelnfoType &info)
Returns some information for the specified frame number such as timestamp.

class Sync: public Callback

15.2. Camera Plugin API 243

Lima Documentation, Release 1.9.8

244 Chapter 15. C++ API

CHAPTER
SIXTEEN

PYTHON API

Most of the previous sections about the user interface routines applies to the Python binding. Naturally, some specifics

concerning Python come into play.

This documentation is very much a work in progress. Stay tuned!

16.1 Hello, pyLima!

Let’s start with a simple example of an image acquisition function using the simulator camera.

from Lima import Core
from Lima import Simulator
import time

def test_mode_generator (cam, nb_frames_prefetched=0) :

if nb_frames_prefetched:
cam.setMode (Simulator.Camera.MODE_GENERATOR_PREFETCH)
fb = cam.getFrameGetter ()
fb.setNbPrefetchedFrames (nb_frames_prefetched)
test = fb.getNbPrefetchedFrames ()

else:
cam.setMode (Simulator.Camera.MODE_GENERATOR)
fb = cam.getFrameGetter ()

Add a peak

pl = Simulator.GaussPeak (10, 10, 23, 1000) # peak at 10,10 fwhm=23 and max=1000

fb.setPeaks ([pl])

def test_mode_loader (cam, nb_frames_prefetched=0) :

if nb_frames_prefetched:
cam.setMode (Simulator.Camera.MODE_LOADER_PREFETCH)
fb = cam.getFrameGetter ()
fb.setNbPrefetchedFrames (nb_frames_prefetched)
test = fb.getNbPrefetchedFrames ()

else:
cam.setMode (Simulator.Camera.MODE_LOADER)
fb = cam.getFrameGetter ()

Set file pattern
fb.setFilePattern (b'input\\test_«.edf")

(continues on next page)

245

Lima Documentation, Release 1.9.8

(continued from previous page)

cam = Simulator.Camera ()

#test_mode_generator (cam)
#test_mode_generator (cam, 10)
#test_mode_loader (cam)
test_mode_loader (cam, 100)

Get the hardware interface
hwint = Simulator.Interface (cam)

Get the control interface
control = Core.CtControl (hwint)

Get the acquisition control
acqg = control.acquisition()

Set new file parameters and autosaving mode
saving = control.saving()

pars=saving.getParameters ()
pars.directory = b'output'
pars.prefix = b'testsimul__
pars.suffix = b'.edf'
pars.fileFormat = Core.CtSaving.EDF
pars.savingMode = Core.CtSaving.AutoFrame
saving.setParameters (pars)

acq = control.acquisition()

now ask for 2 sec. exposure and 10 frames
acqg.setAcgkExpoTime (0.1)
acqg.setAcgNbFrames (10)

control.prepareAcql()
control.startAcq()

wait for last image (#9) ready
status = control.getStatus/()
lastimg = status.ImageCounters.LastImageReady
while lastimg != 9:
time.sleep(0.1)
lastimg = control.getStatus () .ImageCounters.LastImageReady
status = control.getStatus/()
lastimg = status.ImageCounters.LastImageReady

read the first image
im0 = control.ReadImage (0)

246 Chapter 16. Python API

CHAPTER
SEVENTEEN

PREREQUISITE

For collaborative development, we use the “Fork & Pull” model from Github. So anyone who wants to contribute
needs an account on Github. Then you need to fork the project you want to contribute.

Note: If you want to contribute with a new camera plug-in you should first request us (by email @ lima@esrf.fr) to
get the new plug-in camera sub-module created. We will provide:

¢ a default structure of directories (<mycamera>/src /include sip/ doc/ python/ test/)
* the build system file (<mycamera>/CMakeL.ists.txt)

* templates files (src and include) for the mandatory classes:

* <MyCamera>Interface

¢ <MyCamera>DetInfoCtrlObj

¢ <MyCamera>SyncCtrlObj

* astandard .gitignore file

* atemplate index.rst for the documentation

As above do not forget to fork the new sub-module project.

17.1 Create a github account

This is an easy task, you just have to Sign up, it’s free!

17.2 Fork a project

Check out the Github doc, it is far better explained than we could do ;)

247

mailto:lima@esrf.fr
https://github.com/signup/free
https://help.github.com/articles/fork-a-repo

Lima Documentation, Release 1.9.8

248 Chapter 17. Prerequisite

CHAPTER
EIGHTEEN

CONTRIBUTE GUIDELINE

It is very simple to contribute, you should follow the steps below.
1. Branch

First of all you have to create a branch for a new feature or for a bug fix, use an explicit branch name, for
instance “soleil_video_patch” .

2. Code/patch

If it’s a patch from an existing module, respect and keep the coding style of the previous programmer
(indentation,variable naming,end-line. . .).

If you’re starting a new camera project, you’ve just to respect few rules:
¢ (Class member must start with ‘m_’
* Class method must be in CamelCase
* You must define the camera’s namespace
3. Commit

Do as many commit as you need with clear comments. Prefer an atomic commit with a single change
rather than a huge commit with too many (unrelated) changes.

4. Pull Request
Then submit a Pull Request
At this stage you have to wait, we need some time to accept or reject your request. So there are two possible issues:
1. The Pull-request is accepted, congrat!

We merge your branch with the the main project master branch, then everything is fine and you can now
synchronize your forked project with the main project and go on with your next contribution.

2. The pull-request is rejected:
The pull request could be rejected if:
* the new code doesn’t compile
* it breaks backward compatibility
¢ the python wrapping is missing or not updated
 the commit log message doesn’t describe what you actually do
In case of a new camera plug-in sub-module the first pull request will be rejected if:

¢ as above

249

https://help.github.com/articles/using-pull-requests

Lima Documentation, Release 1.9.8

* the documentation is missing or if it does not fit with the guidelines (e.i Understand the plugin
architecture)

We will tell you (code review on Github and/or email) about the reason and we will give some advises to
improve your next tentative of pull-request.

So at this point you have to loop to item 2 (Code/Patch) again. Good luck !

250 Chapter 18. Contribute guideline

lima:
lima:

lima:

lima:

lima:

lima:
lima:

lima:

lima:
lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:
lima:

:AcgStatus:

tor), 239

:AcgStatus:

239

:AcgStatus:

239

:AcgStatus:

tor), 239

:AcgStatus (C++ enum), 239
:AcqgConfig (C++ enumera-

:AcqFault (C++ enumerator),
:AcqReady (C++ enumerator),
:AcqRunning (C++ enumera-

:CtAcquisition (C++ class), 234 .
:CtAcquisition::_ValidRangesCallbac%lma3:thontr013:Status(c++3”““%234

(C++ class), 234

struct), 234

:CtAcquisition: :Parameters (C++

:CtBuffer (C++ class), 239
:CtBuffer::

DataDestroyCallback

(C++ class), 239

:CtControl:

class), 233

:CtControl:

:CtBuffer: :Parameters (C++ struct), 239
:CtControl (C++ class), 232
:_AbortAcgCallback (C++

:_LastBaseImageReadyCallback

(C++ class), 233

:CtControl:

(C++ class), 233

:CtControl:

:_LastImageReadyCallback

(C++ class), 233

:CtControl:

:_LastImageSavedCallback

(C++ class), 233

(C++ class), 233

:CtControl:

233

:CtControl:

tion), 233

:CtControl:

tion), 233

:CtControl:
:CtControl:
:CtControl:
:CtControl:

:abortAcqg (C++ function),
raccumulation (C++ func-
racquisition (C++ func-
:buffer (C++ function), 233
:event (C++ function), 233

: image (C++ function), 233
:ImageStatus (C++ struct),

INDEX

233
lima: :CtControl::ImageStatusCallback
(C++ class), 233
lima::CtControl::ImageStatusThread (C++
class), 233
lima::CtControl::registerImageStatusCallback
(C++ function), 233
lima: :CtControl: :saving (C++ function), 233
lima: :CtControl: :shutter (C++ function), 233
lima::CtControl::SoftOpErrorHandler
(C++ class), 234

lima: :CtControl: :stopAcgAsync (C++ func-
tion), 233

lima::CtControl::unregisterImageStatusCallback
(C++ function), 233

lima: :CtControl: :video (C++ function), 233

lima: :CtImage (C++ class), 239

lima: :CtSaving (C++ class), 234

lima::CtSaving::_ManualBackgroundSaveTask
(C++ class), 237

lima::CtSaving: :_NewFrameSaveCBK (C++

class), 237

lima::CtSaving::_SavingErrorHandler

:_LastCounterReadyCallback (C++ class), 237

lima::CtSaving: :addToCommonHeader (C++
function), 235

lima::CtSaving: :addToFrameHeader (C++
function), 235

lima: :CtSaving: :clear (C++ function), 235

:CtControl::_ReconstructionChangeCa}iBgckCtSaving: :getCommonHeader (C++

function), 235

lima: :CtSaving: :getDirectory (C++ func-
tion), 236

lima::CtSaving: :getFormat (C++ function),
237

lima::CtSaving::getFormatAsString (C++
function), 237

lima: :CtSaving: :getFormatList (C++ func-
tion), 237

lima::CtSaving::getFormatListAsString
(C++ function), 237

251

Lima Documentation, Release 1.9.8

lima::CtSaving: :getFrameHeader (C++ func- function), 234

tion), 235 lima::CtSaving::SaveContainer (C++ class),
lima::CtSaving: :getFramesPerFile (C++ 238

function), 234 lima::CtSaving: :SaveContainer: :getCompressionTask
lima::CtSaving::getHardwareFormatList (C++ function), 238

(C++ function), 237 lima::CtSaving: :SaveContainer: :needParallelCompres:
lima::CtSaving::getMaxConcurrentWritingTask (C++ function), 238

(C++ function), 236 lima::CtSaving::SaveContainer::Stat
lima::CtSaving: :getNextNumber (C++ func- (C++ struct), 238

tion), 237 lima::CtSaving: :setCommonHeader (C++
lima::CtSaving: :getOptions (C++ function), function), 234

237 lima: :CtSaving: :setDirectory (C++ func-
lima: :CtSaving: :getOverwritePolicy (C++ tion), 236

function), 234 lima::CtSaving: :setFormat (C++ function),
lima::CtSaving::getParameters (C++ func- 237

tion), 236 lima::CtSaving::setFormatAsString (C++
lima::CtSaving::getPrefix (C++ function), function), 237

236 lima::CtSaving::setFormatSuffix (C++
lima: :CtSaving: :getSavingMode (C++ func- function), 237

tion), 234 lima::CtSaving::setFramesPerFile (C++
lima::CtSaving::getStatistic (C++ func- function), 234

tion), 235 lima: :CtSaving: : setManagedMode (C++ func-
lima::CtSaving::getStatisticHistorySize tion), 234

(C++ function), 235 lima::CtSaving: :setMaxConcurrentWritingTask
lima::CtSaving::getStreamActive (C++ (C++ function), 236

function), 236 lima::CtSaving: :setNextNumber (C++ func-
lima::CtSaving::getSuffix (C++ function), tion), 237

237 lima: :CtSaving: :setOptions (C++ function),
lima::CtSaving: :Parameters (C++ struct), 237 237
lima::CtSaving: :Parameters::directory lima::CtSaving::setOverwritePolicy (C++

(C++ member), 238 function), 234
lima::CtSaving::Parameters::fileFormat lima::CtSaving::setParameters (C++ func-

(C++ member), 238 tion), 236
lima::CtSaving: :Parameters: :framesPerFiléima::CtSaving: :setPrefix (C++ function),

(C++ member), 238 236
lima::CtSaving: :Parameters::indexFormat lima::CtSaving::setSavingMode (C++ func-

(C++ member), 238 tion), 234
lima::CtSaving: :Parameters: :nextNumber lima::CtSaving::setStatisticHistorySize

(C++ member), 238 (C++ function), 235
lima::CtSaving: :Parameters::overwritePolldma: :CtSaving: :setStreamActive (C++

(C++ member), 238 function), 236
lima::CtSaving::Parameters: :Parameters lima::CtSaving::setSuffix (C++ function),

(C++ function), 237 236
lima::CtSaving::Parameters::prefix (C++ lima::CtSaving::Stream (C++ class), 238

member), 238 lima::CtSaving: :Stream: :_CompressionCBK
lima::CtSaving::Parameters: :savingMode (C++ class), 238

(C++ member), 238 lima::CtSaving::Stream::_SaveCBK (C++
lima::CtSaving::Parameters::suffix (C++ class), 238

member), 238 lima::CtSaving: :Stream::_SaveTask (C++
lima::CtSaving: :removeAllFrameHeaders class), 238

(C++ function), 235 lima::CtSaving::takeFrameHeader (C++
lima::CtSaving::removeFrameHeader (C++ function), 235

function), 235 lima::CtSaving: :updateCommonHeader (C++
lima::CtSaving: :resetCommonHeader (C++ function), 235
252 Index

Lima Documentation, Release 1.9.8

lima:

lima:

lima:

lima:
lima:

lima:
lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:

lima:
lima:

lima:

lima:

lima:

lima:

lima:
lima:

lima:

lima:

lima:

lima:

lima:

lima:

:CtSaving: :updateFrameHeader (C++ lima:

function), 235
:CtSaving::validateFrameHeader lima:

(C++ function), 235
:CtSaving: :writeFrame (C++ function), lima:

236
:CtShutter (C++ class), 239 lima:
:CtShutter: :Parameters (C++ struct),

239 lima:
:DetStatus (C++ enum), 239 lima:
:DetStatus: :DetChargeShift (C++ 1lima:

enumerator), 239
:DetStatus: :DetExposure (C++ enumer- lima:

ator), 239
:DetStatus: :DetFault (C++ enumerator), lima:

239
:DetStatus: :DetIdle (C++ enumerator), lima:

239
:DetStatus: :DetLatency (C++ enumera- lima:

tor), 239
:DetStatus: :DetReadout (C++ enumera- lima:

tor), 239
:DetStatus: :DetShutterClose (C++ lima:

enumerator), 239
:DetStatus: :DetShutterOpen (C++ 1lima:

enumerator), 239
:DetStatus::DetWaitForTrigger (C++ lima:

enumerator), 239
:HwBufferCtrlObj (C++ class), 242 lima:
:HwBufferCtrlObj::Callback (C++

class), 242 lima:
:HwBufferCtrlObj::getBufferPtr

(C++ function), 242 lima:
:HwBufferCtrlObj: :getFrameInfo

(C++ function), 242 lima:
:HwBufferCtrlObj: :getFramePtr (C++

function), 242 lima:

:HwBufferCtrlObj::getStartTimestamp

(C++ function), 242

:HwDetInfoCtrlObj (C++ class), 217, 241
:HwDetInfoCtrlObj::getCurrImageTypelima:

(C++ function), 217, 241

:HwDetInfoCtrlObj: :getDefImageType lima:

(C++ function), 217, 241

:HwDetInfoCtrlObj::getDetectorImagelime:

(C++ function), 217, 241

:HwDetInfoCtrlObj: :getDetectorModellima:

(C++ function), 217, 242

:HwDetInfoCtrlObj: :getDetectorType lima:

(C++ function), 217, 241

:HwDetInfoCtrlObj: :getMaxImageSize lima:

(C++ function), 217, 241 lima:
:HwDetInfoCtrlObj::getPixelSize
(C++ function), 217, 241 lima:

lima:

:HwInterface::Status:

:HwInterface::Status:

:HwDetInfoCtrlObj: :getUserDetectorName

(C++ function), 217, 242

:HwDetInfoCtrlObj: :registerMaxImageSizeCallba

(C++ function), 217, 242

:HwDetInfoCtrlObj: :setUserDetectorName

(C++ function), 217, 242

:HwDetInfoCtrlObj: :unregisterMaxImageSizeCalll

(C++ function), 217, 242

:HwFrameCallback (C++ class), 243
:HwInterface (C++ class), 215, 240
:HwInterface: :getCapList (C++ func-

tion), 215, 240

:HwInterface: :getNbAcquiredFrames

(C++ function), 215, 240

:HwInterface: :getNbHwAcquiredFrames

(C++ function), 215, 240

:HwInterface: :getStatus (C++ func-

tion), 215, 240

:HwInterface: :prepareAcq (C++ func-

tion), 215, 240

:HwInterface: :reset (C++ function), 215,
240
:HwInterface: :startAcqg (C++ function),
215, 240
:HwInterface: :Status (C++ struct), 215,
240
:HwInterface: :Status: :acq (C++ mem-
ber), 216, 241
:HwInterface::Status::Basic (C++
enum), 215, 241
:HwInterface::Status::Basic::Config
(C++ enumerator), 216, 241
:HwInterface::Status::Basic: :Exposure
(C++ enumerator), 215, 241
:HwInterface::Status::Basic::Fault
(C++ enumerator), 215, 241
:HwInterface::Status::Basic::Latency
(C++ enumerator), 216, 241
:HwInterface: :Status::Basic: :Readout

(C++ enumerator), 215, 241

:Basic::Ready
(C++ enumerator), 215, 241

:det (C++ mem-
ber), 216, 241

:HwInterface::Status::det_mask

(C++ member), 216, 241

:HwInterface: :StatusType (C++ type),

240

:HwInterface: :stopAcqg (C++ function),

215, 240

:HwSyncCtrlObj (C++ class), 242
:HwSyncCtrlObj: :checkAutoExposureMode

(C++ function), 243

:HwSyncCtrlObj: :checkTrigMode (C++

Index

253

Lima Documentation, Release 1.9.8

function), 242

lima: :HwSyncCtrlObj: :getExpTime (C++
function), 243
lima::HwSyncCtrlObj::getLatTime (C++
function), 243
lima: :HwSyncCtrlObj::getTrigMode (C++
function), 242
lima: :HwSyncCtrlObj: :setExpTime (C++
function), 242
lima: :HwSyncCtrlObj: :setHwAutoExposureMode
(C++ function), 243
lima: :HwSyncCtrlObj::setLatTime (C++
function), 243
lima: :HwSyncCtrlObj::setTrigMode (C++
function), 242
lima: :HwSyncCtrlObj::ValidRangesCallback
(C++ class), 243
lima: :HwSyncCtrlObj::ValidRangesType
(C++ struct), 243
lima::SoftBufferCtrlObj (C++ class), 243
lima::SoftBufferCtrlObj::getBufferPtr
(C++ function), 243
lima::SoftBufferCtrlObj: :getFramelInfo
(C++ function), 243
lima::SoftBufferCtrlObj: :getFramePtr
(C++ function), 243
lima::SoftBufferCtrlObj::getStartTimestamp
(C++ function), 243
lima::SoftBufferCtrlObj: :Sync (C++ class),
243
254 Index

	Requirements
	Build dependencies
	Python dependencies
	Optional dependencies
	Saving format dependencies
	PyTango server dependencies

	Build and Install
	Install binary packages
	Build from source
	Using scripts
	Using CMake

	Environment Setup

	PyTango Device Server
	Server setup
	Example of plugin server setup : Basler detector
	Lima device server
	Lima Viewer
	Test LimaCCDs device server with Jive

	Overview
	Concepts
	Tutorial
	Supported Cameras
	Conda packages
	Windows Only
	Hamamatsu
	PCO camera
	Perkin Elmer camera
	PhotonicScience

	Linux Only
	ADSC camera
	Andor SDK3
	Aviex camera plugin
	Dexela camera plugin
	Frelon camera
	Maxipix
	DECTRIS EIGER
	Dectris Mythen camera
	Dectris Mythen3
	Dectris Pilatus
	Finger Lakes Instrumentation Microline camera plugin
	imXPAD
	Merlin camera
	PIXIRAD (PX1 and PX8) camera plugin
	PointGrey
	Prosilica
	MarCCD
	Rayonix HS camera
	SlsDetector camera
	Ueye
	Ultra
	V4l2 camera
	Xpad
	Xspress3
	XH camera
	Zwo (Zhen Wang Optical)

	Windows and Linux
	Andor SDK2 camera plugin
	Basler camera
	RoperScientific / Princeton
	Simulator

	Future Cameras
	Acknowledgement
	Under development
	Foreseen

	Python TANGO server
	Main device: LimaCCDs
	Property
	Commands
	Attributes

	Camera devices
	Andor Tango device
	Basler Tango device
	Dexela Tango device
	Frelon Tango device
	ImXPAD Tango device
	Basler Tango device
	Maxipix Tango device
	Merlin Tango device
	Eiger Tango device
	Mythen3 Tango device
	Pilatus Tango device
	PCO Tango device
	PerkinElmer Tango device
	Pixirad Tango device
	PhotonicScience Tango device
	PointGrey Tango device
	Prosilica Tango device
	RayonixHs Tango device
	Simulator Tango device
	SlsDetector Tango device
	Ueye Tango device
	Ultra Tango device
	V4l2 Tango device
	Xh Tango device
	Xpad Tango device
	Xspress3 Tango device

	Plugin devices: software operation and extra interfaces
	Background Substraction
	Bpm
	FlatField
	Mask
	PeakFinder
	Roi2Spectrum
	RoiCounter
	LimaTacoCCD
	LiveViewer

	Understand the plugin architecture
	Library structure
	Generic Interface
	Hardware Interface
	Standard Capabilities
	Detector Information
	Synchronization
	Buffer Management
	Frame callback

	Setting up a development environment
	Install Conda
	Create a build environment

	Source code organization
	Source code
	Plug-ins submodules
	Camera device

	Class names
	How to test the new plugin with python

	Implementation Recommendations
	Write a documentation
	C++ API
	User API
	Hello, Lima!
	Control Interfaces
	Statuses

	Camera Plugin API
	Hardware Interface
	Capabilities interfaces
	Callbacks
	Implementations Helpers

	Python API
	Hello, pyLima!

	Prerequisite
	Create a github account
	Fork a project

	Contribute guideline
	Index

